BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 27129098)

  • 41. Iron dysregulation in Friedreich ataxia.
    Wilson RB
    Semin Pediatr Neurol; 2006 Sep; 13(3):166-75. PubMed ID: 17101455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Friedreich's ataxia: clinical aspects and pathogenesis.
    Pandolfo M
    Semin Neurol; 1999; 19(3):311-21. PubMed ID: 12194387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia.
    Rötig A; de Lonlay P; Chretien D; Foury F; Koenig M; Sidi D; Munnich A; Rustin P
    Nat Genet; 1997 Oct; 17(2):215-7. PubMed ID: 9326946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Therapeutic developments in Friedreich ataxia.
    Wilson RB
    J Child Neurol; 2012 Sep; 27(9):1212-6. PubMed ID: 22791549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich's Ataxia Transgenic Mice.
    Calatrava-Ferreras L; Gonzalo-Gobernado R; Reimers D; Herranz AS; Casarejos MJ; Jiménez-Escrig A; Regadera J; Velasco-Martín J; Vallejo-Muñoz M; Díaz-Gil JJ; Bazán E
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia.
    Zhao H; Li H; Hao S; Chen J; Wu J; Song C; Zhang M; Qiao T; Li K
    Sci Rep; 2017 Aug; 7(1):9840. PubMed ID: 28852135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity.
    Gakh O; Park S; Liu G; Macomber L; Imlay JA; Ferreira GC; Isaya G
    Hum Mol Genet; 2006 Feb; 15(3):467-79. PubMed ID: 16371422
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia.
    Whitnall M; Suryo Rahmanto Y; Huang ML; Saletta F; Lok HC; Gutiérrez L; Lázaro FJ; Fleming AJ; St Pierre TG; Mikhael MR; Ponka P; Richardson DR
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20590-5. PubMed ID: 23169664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Frataxin expression rescues mitochondrial dysfunctions in FRDA cells.
    Tan G; Chen LS; Lonnerdal B; Gellera C; Taroni FA; Cortopassi GA
    Hum Mol Genet; 2001 Sep; 10(19):2099-107. PubMed ID: 11590127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae.
    Branda SS; Yang ZY; Chew A; Isaya G
    Hum Mol Genet; 1999 Jun; 8(6):1099-110. PubMed ID: 10332043
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emerging therapies in Friedreich's Ataxia.
    Zesiewicz TA; Hancock J; Ghanekar SD; Kuo SH; Dohse CA; Vega J
    Expert Rev Neurother; 2020 Dec; 20(12):1215-1228. PubMed ID: 32909841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring frataxin function.
    Busi MV; Gomez-Casati DF
    IUBMB Life; 2012 Jan; 64(1):56-63. PubMed ID: 22095894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2.
    Acquaviva F; De Biase I; Nezi L; Ruggiero G; Tatangelo F; Pisano C; Monticelli A; Garbi C; Acquaviva AM; Cocozza S
    J Cell Sci; 2005 Sep; 118(Pt 17):3917-24. PubMed ID: 16091420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells.
    Tan G; Napoli E; Taroni F; Cortopassi G
    Hum Mol Genet; 2003 Jul; 12(14):1699-711. PubMed ID: 12837693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA.
    Lee YK; Lau YM; Ng KM; Lai WH; Ho SL; Tse HF; Siu CW; Ho PW
    Int J Cardiol; 2016 Jan; 203():964-71. PubMed ID: 26625322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation.
    Ristow M; Pfister MF; Yee AJ; Schubert M; Michael L; Zhang CY; Ueki K; Michael MD; Lowell BB; Kahn CR
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):12239-43. PubMed ID: 11035806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional studies of frataxin.
    Isaya G; O'Neill HA; Gakh O; Park S; Mantcheva R; Mooney SM
    Acta Paediatr Suppl; 2004 May; 93(445):68-71; discussion 72-3. PubMed ID: 15176725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress.
    Seguin A; Bayot A; Dancis A; Rogowska-Wrzesinska A; Auchère F; Camadro JM; Bulteau AL; Lesuisse E
    Mitochondrion; 2009 Apr; 9(2):130-8. PubMed ID: 19460301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The potential of the novel NAD
    Chiang S; Kalinowski DS; Dharmasivam M; Braidy N; Richardson DR; Huang MLH
    Pharmacol Res; 2020 May; 155():104680. PubMed ID: 32032665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization.
    Becker EM; Greer JM; Ponka P; Richardson DR
    Blood; 2002 May; 99(10):3813-22. PubMed ID: 11986241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.