BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27129132)

  • 1. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.
    Magalhães CM; Esteves da Silva JC; Pinto da Silva L
    Chemphyschem; 2016 Aug; 17(15):2286-94. PubMed ID: 27129132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells.
    Theodossiou T; Hothersall JS; Woods EA; Okkenhaug K; Jacobson J; MacRobert AJ
    Cancer Res; 2003 Apr; 63(8):1818-21. PubMed ID: 12702568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable Polymer Nanoparticles for Photodynamic Therapy by Bioluminescence Resonance Energy Transfer.
    Yang Y; Hou W; Liu S; Sun K; Li M; Wu C
    Biomacromolecules; 2018 Jan; 19(1):201-208. PubMed ID: 29211453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminescence in Combination with Organic Photosensitizers: Beyond the Light Penetration Depth Limit of Photodynamic Therapy.
    Gao J; Chen Z; Li X; Yang M; Lv J; Li H; Yuan Z
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative methods of photodynamic therapy and oxygen consumption measurements-A review.
    Bartusik-Aebisher D; Ożóg Ł; Aebisher D
    Biomed Pharmacother; 2021 Feb; 134():111095. PubMed ID: 33341048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy.
    Hsu CY; Chen CW; Yu HP; Lin YF; Lai PS
    Biomaterials; 2013 Jan; 34(4):1204-12. PubMed ID: 23069718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming the Achilles' heel of photodynamic therapy.
    Fan W; Huang P; Chen X
    Chem Soc Rev; 2016 Nov; 45(23):6488-6519. PubMed ID: 27722560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photodynamic effect: the comparison of chemiexcitation by luminol and phthalhydrazide.
    Bancirova M; Lasovský J
    Luminescence; 2011; 26(6):410-5. PubMed ID: 20853519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-natural-molecule, bioluminescent photodynamic therapy results in complete tumor regression and prevents metastasis.
    Yan H; Forward S; Kim KH; Wu Y; Hui J; Kashiparekh A; Yun SH
    Biomaterials; 2023 May; 296():122079. PubMed ID: 36889146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminol as in situ light source in meso-tetraphenylporphyrin-mediated photodynamic therapy.
    Huang L; Chen TC; Lin FH
    Curr Med Chem; 2013; 20(9):1195-202. PubMed ID: 23298136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy.
    Abdurahman R; Yang CX; Yan XP
    Chem Commun (Camb); 2016 Nov; 52(90):13303-13306. PubMed ID: 27782263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen-dependent production of novel photochemotherapeutic agents.
    Pervaiz S
    FASEB J; 2001 Mar; 15(3):612-7. PubMed ID: 11259379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.
    Zhou Z; Song J; Nie L; Chen X
    Chem Soc Rev; 2016 Nov; 45(23):6597-6626. PubMed ID: 27722328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New class of bioluminogenic probe based on bioluminescent enzyme-induced electron transfer: BioLeT.
    Takakura H; Kojima R; Kamiya M; Kobayashi E; Komatsu T; Ueno T; Terai T; Hanaoka K; Nagano T; Urano Y
    J Am Chem Soc; 2015 Apr; 137(12):4010-3. PubMed ID: 25761130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to improve photodynamic therapy of cancer.
    Firczuk M; Winiarska M; Szokalska A; Jodlowska M; Swiech M; Bojarczuk K; Salwa P; Nowis D
    Front Biosci (Landmark Ed); 2011 Jan; 16(1):208-24. PubMed ID: 21196167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution.
    Nishihara R; Suzuki H; Hoshino E; Suganuma S; Sato M; Saitoh T; Nishiyama S; Iwasawa N; Citterio D; Suzuki K
    Chem Commun (Camb); 2015; 51(2):391-4. PubMed ID: 25407088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer.
    Pinto da Silva L; Núnez-Montenegro A; Magalhães CM; Ferreira PJO; Duarte D; González-Berdullas P; Rodríguez-Borges JE; Vale N; Esteves da Silva JCG
    Eur J Med Chem; 2019 Dec; 183():111683. PubMed ID: 31514060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular and cellular targeting for photodynamic therapy.
    Chen B; Pogue BW; Hoopes PJ; Hasan T
    Crit Rev Eukaryot Gene Expr; 2006; 16(4):279-305. PubMed ID: 17206921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic therapy in the treatment of cancer: current state of the art.
    Hsi RA; Rosenthal DI; Glatstein E
    Drugs; 1999 May; 57(5):725-34. PubMed ID: 10353297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers.
    Zhang L; Zeng L; Pan Y; Luo S; Ren W; Gong A; Ma X; Liang H; Lu G; Wu A
    Biomaterials; 2015 Mar; 44():82-90. PubMed ID: 25617128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.