These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27129246)

  • 1. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity.
    Jules J; Chen W; Feng X; Li YP
    J Biol Chem; 2016 Jul; 291(31):16390-403. PubMed ID: 27129246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C/EBPα transcription factor is regulated by the RANK cytoplasmic
    Jules J; Chen W; Feng X; Li YP
    J Biol Chem; 2018 Jan; 293(4):1480-1492. PubMed ID: 29122885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1.
    Chen W; Zhu G; Tang J; Zhou HD; Li YP
    J Pathol; 2018 Mar; 244(3):271-282. PubMed ID: 29083488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C/EBPα regulates osteoclast lineage commitment.
    Chen W; Zhu G; Hao L; Wu M; Ci H; Li YP
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7294-9. PubMed ID: 23580622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1.
    Mira-Pascual L; Tran AN; Andersson G; Näreoja T; Lång P
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα.
    Ma Z; Yu R; Zhao J; Sun L; Jian L; Li C; Liu X
    Inflamm Res; 2019 Feb; 68(2):157-166. PubMed ID: 30604211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.
    Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH
    Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme q10 regulates osteoclast and osteoblast differentiation.
    Moon HJ; Ko WK; Jung MS; Kim JH; Lee WJ; Park KS; Heo JK; Bang JB; Kwon IK
    J Food Sci; 2013 May; 78(5):H785-891. PubMed ID: 23582186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function.
    Chen W; Zhu G; Jules J; Nguyen D; Li YP
    J Bone Miner Res; 2018 Apr; 33(4):691-703. PubMed ID: 29149533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage-inducible transcript 3 restrains osteoclast differentiation and function.
    Yang B; Sun H; Jia M; He Y; Luo Y; Wang T; Wu Y; Wang J
    Bone; 2021 Dec; 153():116162. PubMed ID: 34455116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ginsenoside Rb2 inhibits osteoclast differentiation through nuclear factor-kappaB and signal transducer and activator of transcription protein 3 signaling pathway.
    Cong F; Liu J; Wang C; Yuan Z; Bi L; Liang J; Su K; Qiu Y; Song T; Fan J; Chao G
    Biomed Pharmacother; 2017 Aug; 92():927-934. PubMed ID: 28605877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis.
    Jules J; Li YP; Chen W
    Bone; 2018 Feb; 107():104-114. PubMed ID: 29032174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.
    Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J
    J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.
    Hyeon S; Lee H; Yang Y; Jeong W
    Free Radic Biol Med; 2013 Dec; 65():789-799. PubMed ID: 23954472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agelasine D suppresses RANKL-induced osteoclastogenesis via down-regulation of c-Fos, NFATc1 and NF-κB.
    Kang MR; Jo SA; Yoon YD; Park KH; Oh SJ; Yun J; Lee CW; Nam KH; Kim Y; Han SB; Yu J; Rho J; Kang JS
    Mar Drugs; 2014 Nov; 12(11):5643-56. PubMed ID: 25421321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.
    Kim MH; Ryu SY; Choi JS; Min YK; Kim SH
    J Cell Physiol; 2009 Dec; 221(3):618-28. PubMed ID: 19653230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sophorae Flos extract inhibits RANKL-induced osteoclast differentiation by suppressing the NF-κB/NFATc1 pathway in mouse bone marrow cells.
    Kim JM; Lee JH; Lee GS; Noh EM; Song HK; Gu DR; Kim SC; Lee SH; Kwon KB; Lee YR
    BMC Complement Altern Med; 2017 Mar; 17(1):164. PubMed ID: 28335757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1.
    Yu J; Choi S; Park ES; Shin B; Yu J; Lee SH; Takami M; Kang JS; Meong H; Rho J
    J Clin Immunol; 2012 Dec; 32(6):1360-71. PubMed ID: 22711011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule actin crosslinking factor 1 (MACF1) knockdown inhibits RANKL-induced osteoclastogenesis via Akt/GSK3β/NFATc1 signalling pathway.
    Lin X; Xiao Y; Chen Z; Ma J; Qiu W; Zhang K; Xu F; Dang K; Qian A
    Mol Cell Endocrinol; 2019 Aug; 494():110494. PubMed ID: 31260729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in enhancement of osteoclast formation by activin-A.
    Kajita T; Ariyoshi W; Okinaga T; Mitsugi S; Tominaga K; Nishihara T
    J Cell Biochem; 2018 Aug; 119(8):6974-6985. PubMed ID: 29737562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.