BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27129371)

  • 1. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.
    Placone JK; Navarro J; Laslo GW; Lerman MJ; Gabard AR; Herendeen GJ; Falco EE; Tomblyn S; Burnett L; Fisher JP
    Ann Biomed Eng; 2017 Jan; 45(1):237-248. PubMed ID: 27129371
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Navarro J; Clohessy RM; Holder RC; Gabard AR; Herendeen GJ; Christy RJ; Burnett LR; Fisher JP
    Tissue Eng Part A; 2020 Mar; 26(5-6):265-278. PubMed ID: 31774034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Culturing fibroblasts in 3D human hair keratin hydrogels.
    Wang S; Wang Z; Foo SE; Tan NS; Yuan Y; Lin W; Zhang Z; Ng KW
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5187-98. PubMed ID: 25690726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness.
    Li Z; Liu L; Chen Y
    Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering.
    Cao Y; Yao Y; Li Y; Yang X; Cao Z; Yang G
    J Colloid Interface Sci; 2019 May; 544():121-129. PubMed ID: 30826530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.
    Brigo L; Urciuolo A; Giulitti S; Della Giustina G; Tromayer M; Liska R; Elvassore N; Brusatin G
    Acta Biomater; 2017 Jun; 55():373-384. PubMed ID: 28351679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering.
    Xu H; Cai S; Xu L; Yang Y
    Langmuir; 2014 Jul; 30(28):8461-70. PubMed ID: 25010870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery.
    Long J; Etxeberria AE; Nand AV; Bunt CR; Ray S; Seyfoddin A
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109873. PubMed ID: 31500054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing.
    Sithole MN; Mndlovu H; du Toit LC; Choonara YE
    Curr Pharm Des; 2023; 29(40):3187-3205. PubMed ID: 37779402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds.
    Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.