These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27129371)

  • 1. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel.
    Placone JK; Navarro J; Laslo GW; Lerman MJ; Gabard AR; Herendeen GJ; Falco EE; Tomblyn S; Burnett L; Fisher JP
    Ann Biomed Eng; 2017 Jan; 45(1):237-248. PubMed ID: 27129371
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Navarro J; Clohessy RM; Holder RC; Gabard AR; Herendeen GJ; Christy RJ; Burnett LR; Fisher JP
    Tissue Eng Part A; 2020 Mar; 26(5-6):265-278. PubMed ID: 31774034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Culturing fibroblasts in 3D human hair keratin hydrogels.
    Wang S; Wang Z; Foo SE; Tan NS; Yuan Y; Lin W; Zhang Z; Ng KW
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5187-98. PubMed ID: 25690726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness.
    Li Z; Liu L; Chen Y
    Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering.
    Cao Y; Yao Y; Li Y; Yang X; Cao Z; Yang G
    J Colloid Interface Sci; 2019 May; 544():121-129. PubMed ID: 30826530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.
    Brigo L; Urciuolo A; Giulitti S; Della Giustina G; Tromayer M; Liska R; Elvassore N; Brusatin G
    Acta Biomater; 2017 Jun; 55():373-384. PubMed ID: 28351679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering.
    Xu H; Cai S; Xu L; Yang Y
    Langmuir; 2014 Jul; 30(28):8461-70. PubMed ID: 25010870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery.
    Long J; Etxeberria AE; Nand AV; Bunt CR; Ray S; Seyfoddin A
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109873. PubMed ID: 31500054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing.
    Sithole MN; Mndlovu H; du Toit LC; Choonara YE
    Curr Pharm Des; 2023; 29(40):3187-3205. PubMed ID: 37779402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds.
    Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.