These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27129371)

  • 21. Production of 3D printed polylactide scaffolds with surface grafted hydrogel coatings.
    Kowalczyk P; Trzaskowska P; Łojszczyk I; Podgórski R; Ciach T
    Colloids Surf B Biointerfaces; 2019 Jul; 179():136-142. PubMed ID: 30954014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.
    Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J
    Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some properties of keratin biomaterials: kerateines.
    Hill P; Brantley H; Van Dyke M
    Biomaterials; 2010 Feb; 31(4):585-93. PubMed ID: 19822360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human keratin hydrogels support fibroblast attachment and proliferation in vitro.
    Wang S; Taraballi F; Tan LP; Ng KW
    Cell Tissue Res; 2012 Mar; 347(3):795-802. PubMed ID: 22287039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.
    Köpf M; Campos DF; Blaeser A; Sen KS; Fischer H
    Biofabrication; 2016 May; 8(2):025011. PubMed ID: 27205890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.
    Béduer A; Piacentini N; Aeberli L; Da Silva A; Verheyen CA; Bonini F; Rochat A; Filippova A; Serex L; Renaud P; Braschler T
    Acta Biomater; 2018 Aug; 76():71-79. PubMed ID: 29883809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds.
    Chen CS; Zeng F; Xiao X; Wang Z; Li XL; Tan RW; Liu WQ; Zhang YS; She ZD; Li SJ
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33879-33890. PubMed ID: 30204403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles.
    Ko ES; Kim C; Choi Y; Lee KY
    Carbohydr Polym; 2020 Oct; 245():116496. PubMed ID: 32718609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation.
    Distler T; Ruther F; Boccaccini AR; Detsch R
    Macromol Biosci; 2019 Sep; 19(9):e1900245. PubMed ID: 31386277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.
    Loo Y; Hauser CA
    Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering.
    Bhardwaj N; Sow WT; Devi D; Ng KW; Mandal BB; Cho NJ
    Integr Biol (Camb); 2015 Jan; 7(1):53-63. PubMed ID: 25372050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of a novel crosslinked human keratin-alginate sponge.
    Hartrianti P; Nguyen LTH; Johanes J; Chou SM; Zhu P; Tan NS; Tang MBY; Ng KW
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2590-2602. PubMed ID: 27109145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Keratin-containing scaffolds for tissue engineering applications: a review.
    Soleymani Eil Bakhtiari S; Karbasi S
    J Biomater Sci Polym Ed; 2024 Apr; 35(6):916-965. PubMed ID: 38349200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers.
    Islam A; Yasin T; Gull N; Khan SM; Sabir A; Munawwar MA; Shafiq M; Jamil T; Raza MH
    Int J Biol Macromol; 2016 Nov; 92():1-10. PubMed ID: 27387014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A keratin-based microparticle for cell delivery.
    Thompson M; Giuffre A; McClenny C; Van Dyke M
    J Biomater Appl; 2021 Jan; 35(6):579-591. PubMed ID: 32847463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application.
    Randhawa A; Dutta SD; Ganguly K; Patel DK; Patil TV; Lim KT
    Macromol Biosci; 2023 Jan; 23(1):e2200278. PubMed ID: 36177687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.