BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27129457)

  • 1. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.
    Yatmaz E; Karahalil E; Germec M; Ilgin M; Turhan İ
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1391-9. PubMed ID: 27129457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system.
    Germec M; Yatmaz E; Karahalil E; Turhan İ
    3 Biotech; 2017 May; 7(1):77. PubMed ID: 28455720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Mannanase production and kinetic modeling from carob extract by using recombinant Aspergillus sojae.
    Karahalil E; Germeç M; Turhan I
    Biotechnol Prog; 2019 Nov; 35(6):e2885. PubMed ID: 31342630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1075-80. PubMed ID: 25555703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved mannan-degrading enzymes' production by Aspergillus niger through medium optimization.
    Mohamad SN; Ramanan RN; Mohamad R; Ariff AB
    N Biotechnol; 2011 Feb; 28(2):146-52. PubMed ID: 20970530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation.
    Yatmaz E
    Enzyme Microb Technol; 2021 Oct; 150():109867. PubMed ID: 34489026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the production of beta-mannanase by Bacillus M50].
    Chen Y; Long J; Liao L; Zhang Y; Yang J
    Wei Sheng Wu Xue Bao; 2000 Feb; 40(1):62-8. PubMed ID: 12548880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microparticle-enhanced polygalacturonase production by wild type
    Karahalil E; Demirel F; Evcan E; Germeç M; Tari C; Turhan I
    3 Biotech; 2017 Dec; 7(6):361. PubMed ID: 28979834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1431-6. PubMed ID: 25732541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation.
    Wu M; Tang C; Li J; Zhang H; Guo J
    Carbohydr Res; 2011 Oct; 346(14):2149-55. PubMed ID: 21867993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of temperature, moisture content and inoculum size in solid state fermentation to enhance mannanase production by Aspergillus terreus SUK-1 using RSM.
    Rashid JI; Samat N; Mohtar W; Yusoff W
    Pak J Biol Sci; 2011 May; 14(9):533-9. PubMed ID: 22032082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A β-mannanase from Paenibacillus sp.: Optimization of production and its possible prebiotic potential.
    Dhawan S; Singh R; Kaur R; Kaur J
    Biotechnol Appl Biochem; 2016 Sep; 63(5):669-678. PubMed ID: 26224294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc.
    Tao TL; Cui FJ; Chen XX; Sun WJ; Huang DM; Zhang J; Yang Y; Wu D; Liu WM
    Microb Cell Fact; 2018 Jan; 17(1):1. PubMed ID: 29306327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of palm kernel cake for production of beta-mannanase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor.
    Abdeshahian P; Samat N; Hamid AA; Yusoff WM
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):103-9. PubMed ID: 19937085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated beta-mannanase production.
    el-Helow ER; Khattab AA
    Acta Microbiol Immunol Hung; 1996; 43(4):289-99. PubMed ID: 9147720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Mannanase production by Aspergillus niger BCC4525 and its efficacy on broiler performance.
    Sornlake W; Matetaviparee P; Rattanaphan N; Tanapongpipat S; Eurwilaichitr L
    J Sci Food Agric; 2013 Oct; 93(13):3345-51. PubMed ID: 23716483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of
    Norizan NABM; Halim M; Tan JS; Abbasiliasi S; Mat Sahri M; Othman F; Ariff AB
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32752106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of the Aspergillus aculeatus endo-1,4-beta-mannanase in A. niger.
    van Zyl PJ; Moodley V; Rose SH; Roth RL; van Zyl WH
    J Ind Microbiol Biotechnol; 2009 Apr; 36(4):611-7. PubMed ID: 19277742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts.
    Basmak S; Turhan I
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129798. PubMed ID: 38286365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology.
    Lin SS; Dou WF; Xu HY; Li HZ; Xu ZH; Ma YH
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1015-22. PubMed ID: 17361429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.