BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 27129471)

  • 1. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq.
    Ni Y; Guo N; Zhao Q; Guo Y
    BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.
    Liu Q; Wen C; Zhao H; Zhang L; Wang J; Wang Y
    PLoS One; 2014; 9(11):e113290. PubMed ID: 25415343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance.
    Wang D; Ni Y; Liao L; Xiao Y; Guo Y
    Plant Physiol Biochem; 2021 Feb; 159():312-321. PubMed ID: 33421907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of cuticular waxes of faba bean to light wavelengths and selection of candidate genes for cuticular wax biosynthesis.
    Huang L; Xiao Q; Zhao X; Wang D; Wei L; Li X; Liu Y; He Z; Kang L; Guo Y
    Plant Genome; 2020 Nov; 13(3):e20058. PubMed ID: 33124766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus.
    Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y
    BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification.
    Long Y; Zhang J; Tian X; Wu S; Zhang Q; Zhang J; Dang Z; Pei XW
    BMC Genomics; 2014 Dec; 15(1):1111. PubMed ID: 25511667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl.
    Liu C; Dou Y; Guan X; Fu Q; Zhang Z; Hu Z; Zheng J; Lu Y; Li W
    PLoS One; 2017; 12(6):e0179219. PubMed ID: 28614366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii.
    Qiu Z; Liu F; Lu H; Yuan H; Zhang Q; Huang Y
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27455245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Analysis of Coding and Long Non-Coding RNAs Involved in Cuticular Wax Biosynthesis in Cabbage (
    Zhu X; Tai X; Ren Y; Chen J; Bo T
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31185589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome.
    Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L
    PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja.
    Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X
    PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei).
    Peng J; Wei P; Zhang B; Zhao Y; Zeng D; Chen X; Li M; Chen X
    BMC Genomics; 2015 Nov; 16():1006. PubMed ID: 26607692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform.
    Zhou SM; Chen LM; Liu SQ; Wang XF; Sun XD
    PLoS One; 2015; 10(7):e0133312. PubMed ID: 26204518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas.
    Vigna BB; de Oliveira FA; de Toledo-Silva G; da Silva CC; do Valle CB; de Souza AP
    BMC Genomics; 2016 Nov; 17(1):910. PubMed ID: 27835957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).
    Wang Y; Wang M; Sun Y; Wang Y; Li T; Chai G; Jiang W; Shan L; Li C; Xiao E; Wang Z
    J Exp Bot; 2015 Mar; 66(5):1165-78. PubMed ID: 25468933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening.
    Wang J; Dang Z; Zhang H; Zheng L; Borjigin T; Wang Y
    Mol Genet Genomics; 2016 Feb; 291(1):383-98. PubMed ID: 26388259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.