These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27129685)

  • 1. Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design.
    Yang Z; Cao G; Shang A; Lei DY; Zhang C; Gao P; Ye J; Li X
    Nanoscale Res Lett; 2016 Dec; 11(1):233. PubMed ID: 27129685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity.
    Gai F; Zhang C; Zhan Y; Li X
    Opt Express; 2016 Dec; 24(26):A1505-A1513. PubMed ID: 28059281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of silicon nanowire solar cells with a crescent nanohole.
    Khaled A; Hameed MFO; Rahman BMA; Grattan KTV; Obayya SSA; Hussein M
    Opt Express; 2020 Oct; 28(21):31020-31033. PubMed ID: 33115086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of μc-Si:H/a-Si:H coaxial tandem single-nanowire solar cells considering photocurrent matching.
    Cao G; Li X; Zhan Y; Wu S; Shang A; Zhang C; Yang Z; Zhai X
    Opt Express; 2014 Dec; 22 Suppl 7():A1761-7. PubMed ID: 25607490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photoabsorption in front-tapered single-nanowire solar cells.
    Zhan Y; Li X; Wu S; Li K; Yang Z; Shang A
    Opt Lett; 2014 Oct; 39(19):5756-9. PubMed ID: 25360977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband, polarization-insensitive and wide-angle absorption enhancement of a-Si:H/μc-Si:H tandem solar cells by nanopatterning a-Si:H layer.
    Li X; Zhang C; Yang Z; Shang A
    Opt Express; 2013 Jul; 21 Suppl 4():A677-86. PubMed ID: 24104494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres.
    Yang Z; Shang A; Qin L; Zhan Y; Zhang C; Gao P; Ye J; Li X
    Opt Lett; 2016 Apr; 41(7):1329-32. PubMed ID: 27192228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous silicon nanocone array solar cell.
    Thiyagu S; Pei Z; Jhong MS
    Nanoscale Res Lett; 2012 Mar; 7(1):172. PubMed ID: 22395021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping.
    Yang H; Li BQ; Jiang X; Yu W; Liu H
    Nanotechnology; 2017 Dec; 28(50):505301. PubMed ID: 29099723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.
    Xie S; Hou G; Chen P; Jia B; Gu M
    Nanotechnology; 2017 Feb; 28(8):085402. PubMed ID: 27966477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells.
    Yang Z; Liu Z; Sheng J; Guo W; Zeng Y; Gao P; Ye J
    Sci Rep; 2017 Nov; 7(1):14575. PubMed ID: 29109447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell.
    El-Bashar R; Hussein M; Hegazy SF; Badr Y; Rahman BMA; Grattan KTV; Hameed MFO; Obayya SSA
    Sci Rep; 2022 Jan; 12(1):48. PubMed ID: 34996926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of silver core position on enhanced photon absorption of single nanowire α-Si solar cells.
    Shi L; Zhou Z; Huang Z
    Opt Express; 2013 Nov; 21 Suppl 6():A1007-17. PubMed ID: 24514921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of highly efficient quad-crescent-shaped Si nanowires solar cell.
    El-Bashar R; Hussein M; Hegazy SF; Badr Y; Farhat O Hameed M; Obayya SSA
    Opt Express; 2021 Apr; 29(9):13641-13656. PubMed ID: 33985095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.
    Yang Z; Gao P; Zhang C; Li X; Ye J
    Sci Rep; 2016 Jul; 6():30503. PubMed ID: 27455911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both.
    Winans JD; Hungerford C; Shome K; Rothberg LJ; Fauchet PM
    Opt Express; 2015 Feb; 23(3):A92-A105. PubMed ID: 25836257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.