BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27129773)

  • 1. Identification of (Z)-3:(E)-2-Hexenal Isomerases Essential to the Production of the Leaf Aldehyde in Plants.
    Kunishima M; Yamauchi Y; Mizutani M; Kuse M; Takikawa H; Sugimoto Y
    J Biol Chem; 2016 Jul; 291(27):14023-14033. PubMed ID: 27129773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of (3
    Spyropoulou EA; Dekker HL; Steemers L; van Maarseveen JH; de Koster CG; Haring MA; Schuurink RC; Allmann S
    Front Plant Sci; 2017; 8():1342. PubMed ID: 28824678
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal.
    Chen C; Yu F; Wen X; Chen S; Wang K; Wang F; Zhang J; Wu Y; He P; Tu Y; Li B
    Food Chem; 2022 Jul; 383():132463. PubMed ID: 35183969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.
    Zebelo SA; Matsui K; Ozawa R; Maffei ME
    Plant Sci; 2012 Nov; 196():93-100. PubMed ID: 23017903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles.
    Tanaka T; Ikeda A; Shiojiri K; Ozawa R; Shiki K; Nagai-Kunihiro N; Fujita K; Sugimoto K; Yamato KT; Dohra H; Ohnishi T; Koeduka T; Matsui K
    Plant Physiol; 2018 Oct; 178(2):552-564. PubMed ID: 30126866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of the Green Leaf Volatile (
    Yactayo-Chang JP; Hunter CT; Alborn HT; Christensen SA; Block AK
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olive Recombinant Hydroperoxide Lyase, an Efficient Biocatalyst for Synthesis of Green Leaf Volatiles.
    Jacopini S; Mariani M; de Caraffa VB; Gambotti C; Vincenti S; Desjobert JM; Muselli A; Costa J; Berti L; Maury J
    Appl Biochem Biotechnol; 2016 Jun; 179(4):671-83. PubMed ID: 26961190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis).
    Ono E; Handa T; Koeduka T; Toyonaga H; Tawfik MM; Shiraishi A; Murata J; Matsui K
    Plant Physiol Biochem; 2016 Jan; 98():112-8. PubMed ID: 26686283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements.
    Matsui K; Sugimoto K; Mano J; Ozawa R; Takabayashi J
    PLoS One; 2012; 7(4):e36433. PubMed ID: 22558466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.
    Mirabella R; Rauwerda H; Allmann S; Scala A; Spyropoulou EA; de Vries M; Boersma MR; Breit TM; Haring MA; Schuurink RC
    Plant J; 2015 Sep; 83(6):1082-96. PubMed ID: 26243404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of natural aroma compounds using recombinant whole-cell tomato hydroperoxide lyase biocatalyst.
    Kaur I; Korrapati N; Bonello J; Mukherjee A; Rishi V; Bendigiri C
    J Biosci; 2022; 47():. PubMed ID: 36222142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traumatin- and dinortraumatin-containing galactolipids in Arabidopsis: their formation in tissue-disrupted leaves as counterparts of green leaf volatiles.
    Nakashima A; von Reuss SH; Tasaka H; Nomura M; Mochizuki S; Iijima Y; Aoki K; Shibata D; Boland W; Takabayashi J; Matsui K
    J Biol Chem; 2013 Sep; 288(36):26078-26088. PubMed ID: 23888054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants.
    Sugimoto K; Iijima Y; Takabayashi J; Matsui K
    Front Plant Sci; 2021; 12():721572. PubMed ID: 34868107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds.
    Chen G; Hackett R; Walker D; Taylor A; Lin Z; Grierson D
    Plant Physiol; 2004 Sep; 136(1):2641-51. PubMed ID: 15347800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroperoxide-lyase activity in mint leaves. Volatile C6-aldehyde production from hydroperoxy-fatty acids.
    Gargouri M; Drouet P; Legoy MD
    J Biotechnol; 2004 Jul; 111(1):59-65. PubMed ID: 15196770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. n-Hexanal and (Z)-3-hexenal are generated from arachidonic acid and linolenic acid by a lipoxygenase in Marchantia polymorpha L.
    Tawfik MM; Yamato KT; Kohchi T; Koeduka T; Matsui K
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1148-1155. PubMed ID: 28162041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
    Ju YL; Yue XF; Zhao XF; Zhao H; Fang YL
    Plant Physiol Biochem; 2018 Sep; 130():501-510. PubMed ID: 30096685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Chemical Insecticide Imidacloprid on the Release of C
    Zhou Q; Cheng X; Wang S; Liu S; Wei C
    Sci Rep; 2019 Jan; 9(1):625. PubMed ID: 30679494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of
    Yamauchi Y; Matsuda A; Matsuura N; Mizutani M; Sugimoto Y
    J Pestic Sci; 2018 Aug; 43(3):207-213. PubMed ID: 30363142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of lipoxygenase-pathway-derived aldehydes in barley leaves upon methyl jasmonate treatment.
    Kohlmann M; Bachmann A; Weichert H; Kolbe A; Balkenhohl T; Wasternack C; Feussner I
    Eur J Biochem; 1999 Mar; 260(3):885-95. PubMed ID: 10103020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.