BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27129950)

  • 1. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
    Young JN; Heureux AM; Sharwood RE; Rickaby RE; Morel FM; Whitney SM
    J Exp Bot; 2016 May; 67(11):3445-56. PubMed ID: 27129950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications.
    Valegård K; Andralojc PJ; Haslam RP; Pearce FG; Eriksen GK; Madgwick PJ; Kristoffersen AK; van Lun M; Klein U; Eilertsen HC; Parry MAJ; Andersson I
    J Biol Chem; 2018 Aug; 293(34):13033-13043. PubMed ID: 29925588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic discrimination and kinetic parameters of RubisCO from the marine bloom-forming diatom, Skeletonema costatum.
    Boller AJ; Thomas PJ; Cavanaugh CM; Scott KM
    Geobiology; 2015 Jan; 13(1):33-43. PubMed ID: 25302659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton.
    Rickaby REM; Eason Hubbard MR
    Free Radic Biol Med; 2019 Aug; 140():295-304. PubMed ID: 31075497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms.
    Young JN; Goldman JA; Kranz SA; Tortell PD; Morel FM
    New Phytol; 2015 Jan; 205(1):172-81. PubMed ID: 25283055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon acquisition by diatoms.
    Roberts K; Granum E; Leegood RC; Raven JA
    Photosynth Res; 2007; 93(1-3):79-88. PubMed ID: 17497225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth.
    Gunn LH; Martin Avila E; Birch R; Whitney SM
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25890-25896. PubMed ID: 32989135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum.
    Li M; Young JN
    Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae.
    Heureux AMC; Young JN; Whitney SM; Eason-Hubbard MR; Lee RBY; Sharwood RE; Rickaby REM
    J Exp Bot; 2017 Jun; 68(14):3959-3969. PubMed ID: 28582571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubisco carboxylation kinetics and inorganic carbon utilization in polar versus cold-temperate seaweeds.
    Iñiguez C; Galmés J; Gordillo FJL
    J Exp Bot; 2019 Feb; 70(4):1283-1297. PubMed ID: 30576461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diversity and coevolution of Rubisco and CO
    Capó-Bauçà S; Iñiguez C; Galmés J
    New Phytol; 2024 Mar; 241(6):2353-2365. PubMed ID: 38197185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.
    Galmés J; Hermida-Carrera C; Laanisto L; Niinemets Ü
    J Exp Bot; 2016 Sep; 67(17):5067-91. PubMed ID: 27406782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO
    Iñiguez C; Capó-Bauçà S; Niinemets Ü; Stoll H; Aguiló-Nicolau P; Galmés J
    Plant J; 2020 Feb; 101(4):897-918. PubMed ID: 31820505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.