These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27129958)

  • 1. Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae.
    Giubergia S; Phippen C; Gotfredsen CH; Nielsen KF; Gram L
    Appl Environ Microbiol; 2016 Jul; 82(13):4035-4044. PubMed ID: 27129958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing
    Giubergia S; Phippen C; Nielsen KF; Gram L
    mSystems; 2017; 2(1):. PubMed ID: 28066819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria.
    Machado H; Sonnenschein EC; Melchiorsen J; Gram L
    BMC Genomics; 2015 Mar; 16(1):158. PubMed ID: 25879706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine Chitinolytic
    Paulsen SS; Strube ML; Bech PK; Gram L; Sonnenschein EC
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31213521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of bioactive secondary metabolites by marine vibrionaceae.
    Mansson M; Gram L; Larsen TO
    Mar Drugs; 2011; 9(9):1440-1468. PubMed ID: 22131950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains.
    Buijs Y; Zhang SD; Jørgensen KM; Isbrandt T; Larsen TO; Gram L
    FEMS Microbiol Ecol; 2021 Mar; 97(4):. PubMed ID: 33693627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of the chitin utilization pathway in the Vibrionaceae.
    Hunt DE; Gevers D; Vahora NM; Polz MF
    Appl Environ Microbiol; 2008 Jan; 74(1):44-51. PubMed ID: 17933912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition.
    Wietz M; Mansson M; Gotfredsen CH; Larsen TO; Gram L
    Mar Drugs; 2010 Dec; 8(12):2946-60. PubMed ID: 21339958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
    Giordano D; Coppola D; Russo R; Denaro R; Giuliano L; Lauro FM; di Prisco G; Verde C
    Adv Microb Physiol; 2015; 66():357-428. PubMed ID: 26210108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holomycin, an Antibiotic Secondary Metabolite, Is Required for Biofilm Formation by the Native Producer Photobacterium galatheae S2753.
    Zhang SD; Isbrandt T; Lindqvist LL; Larsen TO; Gram L
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological Potential of Chitinolytic Marine Bacteria.
    Paulsen SS; Andersen B; Gram L; Machado H
    Mar Drugs; 2016 Dec; 14(12):. PubMed ID: 27999269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms.
    Romano S; Jackson SA; Patry S; Dobson ADW
    Mar Drugs; 2018 Jul; 16(7):. PubMed ID: 30041461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-molecule elicitation of microbial secondary metabolites.
    Pettit RK
    Microb Biotechnol; 2011 Jul; 4(4):471-8. PubMed ID: 21375710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Allomonas--a new group of microorganisms of the Vibrionaceae family. I. Research methods and preliminary results of differention from aeromonads and vibrios].
    Kalina GP; Somova AG; Podosinnikova LS; Grafova TI
    Zh Mikrobiol Epidemiol Immunobiol; 1980 Jan; (1):40-6. PubMed ID: 7376760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia.
    Gasparek M; Steel H; Papachristodoulou A
    Biotechnol Adv; 2023; 64():108117. PubMed ID: 36813010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.
    Bertrand S; Bohni N; Schnee S; Schumpp O; Gindro K; Wolfender JL
    Biotechnol Adv; 2014 Nov; 32(6):1180-204. PubMed ID: 24651031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into applications and strategies for discovery of microbial bioactive metabolites.
    Maithani D; Sharma A; Gangola S; Chaudhary P; Bhatt P
    Microbiol Res; 2022 Aug; 261():127053. PubMed ID: 35623160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are There Any Other Compounds Isolated From Dermacoccus spp at All?
    AlMatar M; Eldeeb M; Makky EA; Köksal F; Var I; Kayar B
    Curr Microbiol; 2017 Jan; 74(1):132-144. PubMed ID: 27785553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitinolytic bacteria in the intestinal tract of Japanese coastal fishes.
    Itoi S; Okamura T; Koyama Y; Sugita H
    Can J Microbiol; 2006 Dec; 52(12):1158-63. PubMed ID: 17473885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic and metabolic profiling of nonulosonic acids in Vibrionaceae reveal biochemical phenotypes of allelic divergence in Vibrio vulnificus.
    Lewis AL; Lubin JB; Argade S; Naidu N; Choudhury B; Boyd EF
    Appl Environ Microbiol; 2011 Aug; 77(16):5782-93. PubMed ID: 21724895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.