BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27129975)

  • 1. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.
    Kwak J; Ohrnberger SA; Valencak TG
    Anal Bioanal Chem; 2016 Jul; 408(18):4927-34. PubMed ID: 27129975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequences of vapor enhancement on selenium speciation analysis by HPLC/ICPMS.
    Juresa D; Kuehnelt D; Francesconi KA
    Anal Chem; 2006 Dec; 78(24):8569-74. PubMed ID: 17165855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of volatile selenium metabolites in normal urine by headspace solid phase microextraction gas chromatography-inductively coupled plasma mass spectrometry.
    Bueno M; Pannier F
    Talanta; 2009 May; 78(3):759-63. PubMed ID: 19269425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of biogenic dimethyl selenodisulfide in the headspace gases above genetically modified Escherichia coli.
    Swearingen JW; Frankel DP; Fuentes DE; Saavedra CP; Vásquez CC; Chasteen TG
    Anal Biochem; 2006 Jan; 348(1):115-22. PubMed ID: 16289446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Headspace SPME-GC-MS metabolomics analysis of urinary volatile organic compounds (VOCs).
    Zhang S; Raftery D
    Methods Mol Biol; 2014; 1198():265-72. PubMed ID: 25270935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vivo solid phase microextraction for quantitative analysis of volatile organoselenium compounds in plants.
    Moreno-Martin G; Sanz-Landaluze J; León-Gonzalez ME; Madrid Y
    Anal Chim Acta; 2019 Nov; 1081():72-80. PubMed ID: 31446967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of dimethyl triselenide and dimethyl diselenenyl sulfide in the headspace of metalloid-resistant Bacillus species grown in the presence of selenium oxyanions.
    Burra R; Pradenas GA; Montes RA; Vásquez CC; Chasteen TG
    Anal Biochem; 2010 Jan; 396(2):217-22. PubMed ID: 19766584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium metabolites in human urine after ingestion of selenite, L-selenomethionine, or DL-selenomethionine: a quantitative case study by HPLC/ICPMS.
    Kuehnelt D; Kienzl N; Traar P; Le NH; Francesconi KA; Ochi T
    Anal Bioanal Chem; 2005 Sep; 383(2):235-46. PubMed ID: 16132136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles.
    Moreno-Martin G; Sanz-Landaluze J; León-González ME; Madrid Y
    Talanta; 2021 Mar; 224():121907. PubMed ID: 33379111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of selenosugars in crude human urine using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry.
    Letsiou S; Nischwitz V; Traar P; Francesconi KA; Pergantis SA
    Rapid Commun Mass Spectrom; 2007; 21(3):343-51. PubMed ID: 17206597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls.
    Cozzolino R; De Magistris L; Saggese P; Stocchero M; Martignetti A; Di Stasio M; Malorni A; Marotta R; Boscaino F; Malorni L
    Anal Bioanal Chem; 2014 Jul; 406(19):4649-62. PubMed ID: 24828982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Headspace hollow fiber protected liquid-phase microextraction combined with gas chromatography-mass spectroscopy for speciation and determination of volatile organic compounds of selenium in environmental and biological samples.
    Ghasemi E; Sillanpää M; Najafi NM
    J Chromatogr A; 2011 Jan; 1218(3):380-6. PubMed ID: 21185031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of methylselenol, dimethylselenide and dimethyldiselenide in in vitro metabolism models determined by headspace GC-MS.
    Gabel-Jensen C; Lunøe K; Gammelgaard B
    Metallomics; 2010 Feb; 2(2):167-73. PubMed ID: 21069149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the human urine metabolomic potentialities by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry.
    Rocha SM; Caldeira M; Carrola J; Santos M; Cruz N; Duarte IF
    J Chromatogr A; 2012 Aug; 1252():155-63. PubMed ID: 22776727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography-mass spectrometry.
    Kristiana I; Heitz A; Joll C; Sathasivan A
    J Chromatogr A; 2010 Sep; 1217(38):5995-6001. PubMed ID: 20708191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary identification and determination of characteristic volatile organic compounds from cotton, polyester and terry-towel by headspace solid phase microextraction gas chromatography-mass spectrometry.
    Stapleton K; Dean JR
    J Chromatogr A; 2013 Jun; 1295():147-51. PubMed ID: 23683894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium metabolites in urine: a critical overview of past work and current status.
    Francesconi KA; Pannier F
    Clin Chem; 2004 Dec; 50(12):2240-53. PubMed ID: 15459094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined speciation analysis by X-ray absorption near-edge structure spectroscopy, ion chromatography, and solid-phase microextraction gas chromatography-mass spectrometry to evaluate biotreatment of concentrated selenium wastewaters.
    Lenz M; van Hullebusch ED; Farges F; Nikitenko S; Corvini PF; Lens PN
    Environ Sci Technol; 2011 Feb; 45(3):1067-73. PubMed ID: 21182285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer.
    Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A
    Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1683-90. PubMed ID: 24975248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Optimization of Liquid-Liquid Extraction of Urinary Volatile and Semi-Volatile Compounds and Its Application for Gas Chromatography-Mass Spectrometry and Proton Nuclear Magnetic Resonance Spectroscopy.
    Drabińska N; Młynarz P; de Lacy Costello B; Jones P; Mielko K; Mielnik J; Persad R; Ratcliffe NM
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32796601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.