BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27130125)

  • 1. Electronic tongue for nitro and peroxide explosive sensing.
    González-Calabuig A; Cetó X; Del Valle M
    Talanta; 2016 Jun; 153():340-6. PubMed ID: 27130125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.
    Cetó X; O' Mahony AM; Wang J; Del Valle M
    Talanta; 2013 Mar; 107():270-6. PubMed ID: 23598222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD.
    Cooper JK; Grant CD; Zhang JZ
    J Phys Chem A; 2013 Jul; 117(29):6043-51. PubMed ID: 23432018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.
    Sağlam Ş; Üzer A; Erçağ E; Apak R
    Anal Chem; 2018 Jun; 90(12):7364-7370. PubMed ID: 29786423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor.
    Paul M; Tscheuschner G; Herrmann S; Weller MG
    Biosensors (Basel); 2020 Aug; 10(8):. PubMed ID: 32764236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
    Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y
    J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality.
    Steevens JA; Duke BM; Lotufo GR; Bridges TS
    Environ Toxicol Chem; 2002 Jul; 21(7):1475-82. PubMed ID: 12109749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX.
    Lynch JC; Brannon JM; Delfino JJ
    Chemosphere; 2002 May; 47(7):725-34. PubMed ID: 12079068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergetic toxic effect of an explosive material mixture in soil.
    Panz K; Miksch K; Sójka T
    Bull Environ Contam Toxicol; 2013 Nov; 91(5):555-9. PubMed ID: 24005241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A luminescent Zn-MOF for the detection of explosives and development of fingerprints.
    Kumar A; Sahoo SC; Mehta SK; Soni P; Sharma V; Kataria R
    Anal Methods; 2022 Feb; 14(7):700-707. PubMed ID: 35099486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow-Injection Analysis Tandem Mass Spectrometry.
    Ostrinskaya A; Kunz RR; Clark M; Kingsborough RP; Ong TH; Deneault S
    J Forensic Sci; 2019 Jan; 64(1):223-230. PubMed ID: 29797696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.