BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 27130273)

  • 1. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.
    Chou SF; Luo LJ; Lai JY
    Acta Biomater; 2016 Jul; 38():116-28. PubMed ID: 27130273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant Gallic Acid-Functionalized Biodegradable in Situ Gelling Copolymers for Cytoprotective Antiglaucoma Drug Delivery Systems.
    Lai JY; Luo LJ
    Biomacromolecules; 2015 Sep; 16(9):2950-63. PubMed ID: 26248008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery.
    Luo LJ; Lai JY
    Acta Biomater; 2017 Feb; 49():344-357. PubMed ID: 27890728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits.
    Chou SF; Luo LJ; Lai JY
    Sci Rep; 2017 Feb; 7():42344. PubMed ID: 28186167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Int J Pharm; 2016 Sep; 511(1):30-43. PubMed ID: 27374201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration.
    Lai JY; Luo LJ
    Eur J Pharm Biopharm; 2017 Apr; 113():140-148. PubMed ID: 28088634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine.
    Lai JY; Hsieh AC
    Biomaterials; 2012 Mar; 33(7):2372-87. PubMed ID: 22182746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems.
    Luo LJ; Lai JY
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():897-909. PubMed ID: 30813096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: effect of a mercaptoacetic acid/N-isopropylacrylamide molar ratio.
    Lai JY
    Drug Des Devel Ther; 2013; 7():1273-85. PubMed ID: 24187486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers.
    Luo LJ; Huang CC; Chen HC; Lai JY; Matsusaki M
    Carbohydr Polym; 2018 Oct; 197():375-384. PubMed ID: 30007625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix.
    Nguyen DD; Luo LJ; Lai JY
    Adv Healthc Mater; 2019 Dec; 8(24):e1900702. PubMed ID: 31746141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma.
    Nguyen DD; Luo LJ; Lai JY
    Acta Biomater; 2020 Jul; 111():302-315. PubMed ID: 32428681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.
    Cirillo G; Hampel S; Klingeler R; Puoci F; Iemma F; Curcio M; Parisi OI; Spizzirri UG; Picci N; Leonhardt A; Ritschel M; Büchner B
    J Pharm Pharmacol; 2011 Feb; 63(2):179-88. PubMed ID: 21235581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan.
    Mitsou E; Pletsa V; Sotiroudis GT; Panine P; Zoumpanioti M; Xenakis A
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110974. PubMed ID: 32208193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome.
    Luo LJ; Lai JY
    Sci Rep; 2017 Aug; 7(1):9380. PubMed ID: 28839279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy.
    Thi PL; Lee Y; Tran DL; Thi TTH; Kang JI; Park KM; Park KD
    Acta Biomater; 2020 Feb; 103():142-152. PubMed ID: 31846801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives.
    Lu Z; Nie G; Belton PS; Tang H; Zhao B
    Neurochem Int; 2006 Mar; 48(4):263-74. PubMed ID: 16343693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer.
    Xie M; Hu B; Wang Y; Zeng X
    J Agric Food Chem; 2014 Sep; 62(37):9128-36. PubMed ID: 25198516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage.
    Bai R; Yong H; Zhang X; Liu J; Liu J
    Int J Biol Macromol; 2020 Jan; 143():49-59. PubMed ID: 31812751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.
    Limpisophon K; Schleining G
    J Food Sci; 2017 Jan; 82(1):80-89. PubMed ID: 27918620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.