BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 27130274)

  • 1. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.
    Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers.
    Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y
    Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.
    Liu X; Zuo Y; Sun J; Guo Z; Fan H; Zhang X
    Carbohydr Polym; 2017 Dec; 178():8-17. PubMed ID: 29050618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic generation of hollow Ca-alginate microfibers.
    Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
    Yao K; Li W; Li K; Wu Q; Gu Y; Zhao L; Zhang Y; Gao X
    Macromol Biosci; 2020 Mar; 20(3):e1900395. PubMed ID: 32141708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
    Wu Z; Cai H; Ao Z; Xu J; Heaps S; Guo F
    Adv Mater Technol; 2021 Aug; 6(8):. PubMed ID: 34458563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties.
    Xiao W; Tan Y; Li J; Gu C; Li H; Li B; Liao X
    J Biomater Sci Polym Ed; 2018 Dec; 29(17):2068-2082. PubMed ID: 29943690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system.
    Xie M; Gao Q; Qiu J; Fu J; Chen Z; He Y
    Biomater Sci; 2019 Dec; 8(1):109-117. PubMed ID: 31761908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Gelatin Methacryloyl (GelMA) Hydrogels in Microfluidic Technique-Assisted Tissue Engineering.
    Liu T; Weng W; Zhang Y; Sun X; Yang H
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of osteon-like scaffold-cell construct by quadruple coaxial extrusion-based 3D bioprinting of nanocomposite hydrogel.
    Ghahri T; Salehi Z; Aghajanpour S; Eslaminejad MB; Kalantari N; Akrami M; Dinarvand R; Jang HL; Esfandyari-Manesh M
    Biomater Adv; 2023 Feb; 145():213254. PubMed ID: 36584583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.