BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27130461)

  • 1. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation.
    Zheng H; Yu Z; Fu X; Li S; Xu J; Song H; Ma Y
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):977-87. PubMed ID: 27130461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10.
    Zhou C; Xue Y; Ma Y
    Microb Cell Fact; 2018 Aug; 17(1):124. PubMed ID: 30098601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris.
    Zhu T; You L; Gong F; Xie M; Xue Y; Li Y; Ma Y
    Enzyme Microb Technol; 2011 Sep; 49(4):407-12. PubMed ID: 22112568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High level expression of a truncated β-mannanase from alkaliphilic Bacillus sp. N16-5 in Kluyveromyces cicerisporus.
    Pan X; Zhou J; Tian A; Le K; Yuan H; Xue Y; Ma Y; Lu H
    Biotechnol Lett; 2011 Mar; 33(3):565-70. PubMed ID: 21053049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermenter scale production of recombinant beta-mannanase by E. coli BL21 cells under microaerobic environment.
    Purohit A; Pawar L; Yadav SK
    Carbohydr Res; 2024 Jul; 541():109150. PubMed ID: 38788560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli.
    Duan X; Zou C; Wu J
    Bioresour Technol; 2015 Oct; 194():137-43. PubMed ID: 26188556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology.
    Lin SS; Dou WF; Xu HY; Li HZ; Xu ZH; Ma YH
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1015-22. PubMed ID: 17361429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Alkaline-adapted beta-mannanase of Bacillus pumilus: gene heterologous expression and enzyme characterization].
    Tang J; Guo S; Wang W; Wei W; Wei D
    Wei Sheng Wu Xue Bao; 2015 Nov; 55(11):1445-57. PubMed ID: 26915226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the production of beta-mannanase by Bacillus M50].
    Chen Y; Long J; Liao L; Zhang Y; Yang J
    Wei Sheng Wu Xue Bao; 2000 Feb; 40(1):62-8. PubMed ID: 12548880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-level production of a cold-active B-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression.
    Huang JL; Bao LX; Zou HY; Che SG; Wang GX
    Mol Gen Mikrobiol Virusol; 2012; (4):14-7. PubMed ID: 23248847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.
    Zhao Y; Zhang Y; Cao Y; Qi J; Mao L; Xue Y; Gao F; Peng H; Wang X; Gao GF; Ma Y
    PLoS One; 2011 Jan; 6(1):e14608. PubMed ID: 21436878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray study of alkaline beta-mannanase from the alkaliphilic Bacillus sp. N16-5.
    Zhao Y; Zhang Y; Gao F; Xue Y; Zeng Y; Ma Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Oct; 64(Pt 10):957-9. PubMed ID: 18931445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization.
    Vijayalaxmi S; Prakash P; Jayalakshmi SK; Mulimani VH; Sreeramulu K
    Appl Biochem Biotechnol; 2013 Sep; 171(2):382-95. PubMed ID: 23839508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters.
    Pongsapipatana N; Damrongteerapap P; Chantorn S; Sintuprapa W; Keawsompong S; Nitisinprasert S
    Enzyme Microb Technol; 2016 Jul; 89():39-51. PubMed ID: 27233126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of
    Norizan NABM; Halim M; Tan JS; Abbasiliasi S; Mat Sahri M; Othman F; Ariff AB
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32752106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes.
    Duan X; Chen J; Wu J
    Bioresour Technol; 2013 Oct; 146():379-385. PubMed ID: 23948275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced
    Sun Y; Zhou X; Zhang W; Tian X; Ping W; Ge J
    Prep Biochem Biotechnol; 2022; 52(7):845-853. PubMed ID: 34826265
    [No Abstract]   [Full Text] [Related]  

  • 18. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain.
    Zhou J; Zhang R; Gao Y; Li J; Tang X; Mu Y; Wang F; Li C; Dong Y; Huang Z
    J Biosci Bioeng; 2012 May; 113(5):568-74. PubMed ID: 22265897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability.
    Luo Z; Miao J; Li G; Du Y; Yu X
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1259-1275. PubMed ID: 28101787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli.
    Sohoni SV; Nelapati D; Sathe S; Javadekar-Subhedar V; Gaikaiwari RP; Wangikar PP
    Bioresour Technol; 2015; 188():202-8. PubMed ID: 25739996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.