These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 27130577)

  • 21. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science.
    Nielsen JB; Willerslev-Olsen M; Christiansen L; Lundbye-Jensen J; Lorentzen J
    J Mot Behav; 2015; 47(1):7-17. PubMed ID: 25575219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application.
    Khan MA; Das R; Iversen HK; Puthusserypady S
    Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasticity.
    Nudo RJ
    NeuroRx; 2006 Oct; 3(4):420-7. PubMed ID: 17012055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: a systematic review.
    Bressi F; Bravi M; Campagnola B; Bruno D; Marzolla A; Santacaterina F; Miccinilli S; Sterzi S
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):11-44. Technology in Medicine. PubMed ID: 33386032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative technologies applied to sensorimotor rehabilitation after stroke.
    Laffont I; Bakhti K; Coroian F; van Dokkum L; Mottet D; Schweighofer N; Froger J
    Ann Phys Rehabil Med; 2014 Nov; 57(8):543-551. PubMed ID: 25261273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NSF DARE-transforming modeling in neurorehabilitation: perspectives and opportunities from US funding agencies.
    Hwang GM; Kulwatno J; Cruz TH; Chen D; Ajisafe T; Monaco JD; Nitkin R; George SM; Lucas C; Zehnder SM; Zhang LT
    J Neuroeng Rehabil; 2024 Feb; 21(1):17. PubMed ID: 38310271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
    Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The future of cognitive neurorehabilitation.
    Stuss DT
    Neuropsychol Rehabil; 2011 Oct; 21(5):755-68. PubMed ID: 21950776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor learning: its relevance to stroke recovery and neurorehabilitation.
    Krakauer JW
    Curr Opin Neurol; 2006 Feb; 19(1):84-90. PubMed ID: 16415682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation.
    Deutsch JE; Westcott McCoy S
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3(Suppl 3 IV STEP 2016 CONFERENCE PROCEEDINGS):S23-S36. PubMed ID: 28654475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebral plasticity as the basis for upper limb recovery following brain damage.
    Lotze M; Ladda AM; Stephan KM
    Neurosci Biobehav Rev; 2019 Apr; 99():49-58. PubMed ID: 30710580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies.
    Sartori M; Llyod DG; Farina D
    IEEE Trans Biomed Eng; 2016 May; 63(5):879-893. PubMed ID: 27046865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
    Hakim RM; Tunis BG; Ross MD
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.
    Fluet GG; Patel J; Qiu Q; Yarossi M; Massood S; Adamovich SV; Tunik E; Merians AS
    Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.