These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 27131016)
1. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules. Topuz E; van Gestel CA Environ Int; 2016; 92-93():334-47. PubMed ID: 27131016 [TBL] [Abstract][Full Text] [Related]
2. An integrated approach to occupational health risk assessment of manufacturing nanomaterials using Pythagorean Fuzzy AHP and Fuzzy Inference System. Salari S; Sadeghi-Yarandi M; Golbabaei F Sci Rep; 2024 Jan; 14(1):180. PubMed ID: 38168505 [TBL] [Abstract][Full Text] [Related]
3. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Meesters JA; Veltman K; Hendriks AJ; van de Meent D Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247 [TBL] [Abstract][Full Text] [Related]
4. FESAEI: a fuzzy rule-based expert system for the assessment of environmental impacts : A fuzzy logic approach to impact assessment. de Tomas Sánchez JE; de Tomás Marín S; Clavell VP Environ Monit Assess; 2018 Aug; 190(9):528. PubMed ID: 30120608 [TBL] [Abstract][Full Text] [Related]
5. Integration of cancer and non-cancer human health risk assessment for Aniline enriched groundwater: a fuzzy inference system-based approach. Mohanta VL; Mishra BK Environ Geochem Health; 2020 Nov; 42(11):3623-3639. PubMed ID: 32419090 [TBL] [Abstract][Full Text] [Related]
6. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701 [TBL] [Abstract][Full Text] [Related]
7. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Mitrano DM; Motellier S; Clavaguera S; Nowack B Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000 [TBL] [Abstract][Full Text] [Related]
8. Assessing water quality in rivers with fuzzy inference systems: a case study. Ocampo-Duque W; Ferré-Huguet N; Domingo JL; Schuhmacher M Environ Int; 2006 Aug; 32(6):733-42. PubMed ID: 16678900 [TBL] [Abstract][Full Text] [Related]
9. Risk grade assessment of sudden water pollution based on analytic hierarchy process and fuzzy comprehensive evaluation. Zhang H; Li W; Miao P; Sun B; Kong F Environ Sci Pollut Res Int; 2020 Jan; 27(1):469-481. PubMed ID: 31797271 [TBL] [Abstract][Full Text] [Related]
10. Conscious worst case definition for risk assessment, part I: a knowledge mapping approach for defining most critical risk factors in integrative risk management of chemicals and nanomaterials. Sørensen PB; Thomsen M; Assmuth T; Grieger KD; Baun A Sci Total Environ; 2010 Aug; 408(18):3852-9. PubMed ID: 19945144 [TBL] [Abstract][Full Text] [Related]
11. Bimodal fuzzy analytic hierarchy process (BFAHP) for coronary heart disease risk assessment. Sabahi F J Biomed Inform; 2018 Jul; 83():204-216. PubMed ID: 29625186 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive environmental assessment approach to engineered nanomaterials. Davis JM Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):139-49. PubMed ID: 23255303 [TBL] [Abstract][Full Text] [Related]
13. Application of multiattribute decision-making methods for the determination of relative significance factor of impact categories. Noh J; Lee KM Environ Manage; 2003 May; 31(5):633-41. PubMed ID: 12719893 [TBL] [Abstract][Full Text] [Related]
14. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Musee N Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195 [TBL] [Abstract][Full Text] [Related]
15. Environmental risk assessment system for phosphogypsum tailing dams. Sun X; Ning P; Tang X; Yi H; Li K; Zhou L; Xu X ScientificWorldJournal; 2013; 2013():680798. PubMed ID: 24382947 [TBL] [Abstract][Full Text] [Related]
16. Using a fuzzy comprehensive evaluation method to determine product usability: A proposed theoretical framework. Zhou R; Chan AH Work; 2017; 56(1):9-19. PubMed ID: 28035943 [TBL] [Abstract][Full Text] [Related]
17. Assessment of risk factors in forest road design and construction activities with fuzzy analytic hierarchy process approach in Turkey. Akay AO; Demir M; Akgul M Environ Monit Assess; 2018 Aug; 190(9):561. PubMed ID: 30167894 [TBL] [Abstract][Full Text] [Related]
18. Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Onüt S; Soner S Waste Manag; 2008; 28(9):1552-9. PubMed ID: 17768038 [TBL] [Abstract][Full Text] [Related]
19. A semi-quantitative risk ranking of potential human exposure to engineered nanoparticles (ENPs) in Europe. Li Y; Cummins E Sci Total Environ; 2021 Jul; 778():146232. PubMed ID: 33714827 [TBL] [Abstract][Full Text] [Related]
20. Risk assessment of groundwater contamination: a multilevel fuzzy comprehensive evaluation approach based on DRASTIC model. Zhang Q; Yang X; Zhang Y; Zhong M ScientificWorldJournal; 2013; 2013():610390. PubMed ID: 24453883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]