These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 27131016)
21. Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta. Wu C; Liu G; Huang C; Liu Q; Guan X Int J Environ Res Public Health; 2018 Apr; 15(5):. PubMed ID: 29693619 [TBL] [Abstract][Full Text] [Related]
22. A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach for contaminated sites management. Hu Y; Wen JY; Li XL; Wang DZ; Li Y J Hazard Mater; 2013 Oct; 261():522-33. PubMed ID: 23995555 [TBL] [Abstract][Full Text] [Related]
23. Fuzzy comprehensive evaluation of multiple environmental factors for swine building assessment and control. Xie Q; Ni JQ; Su Z J Hazard Mater; 2017 Oct; 340():463-471. PubMed ID: 28759867 [TBL] [Abstract][Full Text] [Related]
24. Fuzzy modeling of interactions among environmental stressors in the ecosystem of Lake Koronia, Greece. Ioannidou IA; Paraskevopoulos S; Tzionas P Environ Manage; 2003 Nov; 32(5):624-38. PubMed ID: 15015700 [TBL] [Abstract][Full Text] [Related]
25. Fuzzy analytic hierarchy process-based risk priority number for risk assessments of commissioning process of a ring gantry LINAC. Chang J; Jang S; Lalonde R; Huq SM J Appl Clin Med Phys; 2022 Nov; 23(11):e13760. PubMed ID: 35998202 [TBL] [Abstract][Full Text] [Related]
26. Assessing coastal reclamation suitability based on a fuzzy-AHP comprehensive evaluation framework: A case study of Lianyungang, China. Feng L; Zhu X; Sun X Mar Pollut Bull; 2014 Dec; 89(1-2):102-111. PubMed ID: 25455377 [TBL] [Abstract][Full Text] [Related]
27. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies. Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332 [TBL] [Abstract][Full Text] [Related]
28. Tunnel collapse risk assessment based on improved quantitative theory III and EW-AHP coupling weight. Li L; Ni B; Zhang S; Qiang Y; Zhang Z; Zhou L; Liu G; Cheng L Sci Rep; 2022 Sep; 12(1):16054. PubMed ID: 36163228 [TBL] [Abstract][Full Text] [Related]
29. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination. Li J; Huang GH; Zeng G; Maqsood I; Huang Y J Environ Manage; 2007 Jan; 82(2):173-88. PubMed ID: 16574309 [TBL] [Abstract][Full Text] [Related]
30. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M Environ Int; 2020 May; 138():105646. PubMed ID: 32179325 [TBL] [Abstract][Full Text] [Related]
31. Fuzzy decision analysis for integrated environmental vulnerability assessment of the mid-Atlantic Region. Tran LT; Knight CG; O'Neill RV; Smith ER; Riitters KH; Wickham J Environ Manage; 2002 Jun; 29(6):845-59. PubMed ID: 11992175 [TBL] [Abstract][Full Text] [Related]
32. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
33. An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems. Uzoka FM; Obot O; Barker K; Osuji J Comput Methods Programs Biomed; 2011 Jul; 103(1):10-27. PubMed ID: 20633949 [TBL] [Abstract][Full Text] [Related]
34. Risk management frameworks for human health and environmental risks. Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953 [TBL] [Abstract][Full Text] [Related]
35. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
36. A functional assay-based strategy for nanomaterial risk forecasting. Hendren CO; Lowry GV; Unrine JM; Wiesner MR Sci Total Environ; 2015 Dec; 536():1029-1037. PubMed ID: 26188653 [TBL] [Abstract][Full Text] [Related]
37. An indicator of pesticide environmental impact based on a fuzzy expert system. van der Werf HM; Zimmer C Chemosphere; 1998 Apr; 36(10):2225-49. PubMed ID: 9566298 [TBL] [Abstract][Full Text] [Related]
38. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Hund-Rinke K; Baun A; Cupi D; Fernandes TF; Handy R; Kinross JH; Navas JM; Peijnenburg W; Schlich K; Shaw BJ; Scott-Fordsmand JJ Nanotoxicology; 2016 Dec; 10(10):1442-1447. PubMed ID: 27592624 [TBL] [Abstract][Full Text] [Related]
39. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351 [TBL] [Abstract][Full Text] [Related]
40. Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles. Tsang MP; Hristozov D; Zabeo A; Koivisto AJ; Jensen ACØ; Jensen KA; Pang C; Marcomini A; Sonnemann G Nanotoxicology; 2017 May; 11(4):558-568. PubMed ID: 28494628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]