These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27131113)

  • 1. Halogen Chemistry on Catalytic Surfaces.
    Moser M; Pérez-Ramírez J
    Chimia (Aarau); 2016; 70(4):274-8. PubMed ID: 27131113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between surface chemistry and performance of rutile-type catalysts for halogen production.
    Moser M; Paunović V; Guo Z; Szentmiklósi L; Hevia MG; Higham M; López N; Teschner D; Pérez-Ramírez J
    Chem Sci; 2016 May; 7(5):2996-3005. PubMed ID: 29997788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The virtue of defects: stable bromine production by catalytic oxidation of hydrogen bromide on titanium oxide.
    Moser M; Czekaj I; López N; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2014 Aug; 53(33):8628-33. PubMed ID: 24889466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complete catalytic reaction scheme for Hg
    Yang Y; Liu J; Wang Z; Miao S; Ding J; Yu Y; Zhang J
    J Hazard Mater; 2019 Jul; 373():660-670. PubMed ID: 30954868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of industrial catalysts for sustainable chlorine production.
    Mondelli C; Amrute AP; Moser M; Schmidt T; Pérez-Ramírez J
    Chimia (Aarau); 2012; 66(9):694-8. PubMed ID: 23211728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halogen-Mediated Conversion of Hydrocarbons to Commodities.
    Lin R; Amrute AP; Pérez-Ramírez J
    Chem Rev; 2017 Mar; 117(5):4182-4247. PubMed ID: 28150944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the metal precursor on the catalytic behavior of Pt/ceria catalysts in the preferential oxidation of CO in the presence of H₂ (PROX).
    Jardim EO; Rico-Francés S; Coloma F; Anderson JA; Silvestre-Albero J; Sepúlveda-Escribano A
    J Colloid Interface Sci; 2015 Apr; 443():45-55. PubMed ID: 25531415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization.
    Paunović V; Lin R; Scharfe M; Amrute AP; Mitchell S; Hauert R; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9791-9795. PubMed ID: 28569443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions.
    Kuo CH; Li W; Pahalagedara L; El-Sawy AM; Kriz D; Genz N; Guild C; Ressler T; Suib SL; He J
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2345-50. PubMed ID: 25284796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nanostructured dual-oxide supports in enhanced catalytic activity: theory of CO oxidation over Au/IrO2/TiO2.
    Liu ZP; Jenkins SJ; King DA
    Phys Rev Lett; 2004 Oct; 93(15):156102. PubMed ID: 15524905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozonation of bezafibrate over ceria and ceria supported on carbon materials.
    Gonçalves AG; Órfão JJ; Pereira MF
    Environ Technol; 2015; 36(5-8):776-85. PubMed ID: 25189707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model studies with gold: a versatile oxidation and hydrogenation catalyst.
    Pan M; Gong J; Dong G; Mullins CB
    Acc Chem Res; 2014 Mar; 47(3):750-60. PubMed ID: 24635457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.