These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27131113)

  • 21. Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation.
    Singhania N; Anumol EA; Ravishankar N; Madras G
    Dalton Trans; 2013 Nov; 42(43):15343-54. PubMed ID: 24005441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fundamentals and Catalytic Applications of CeO2-Based Materials.
    Montini T; Melchionna M; Monai M; Fornasiero P
    Chem Rev; 2016 May; 116(10):5987-6041. PubMed ID: 27120134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced dehalogenation and coupled recovery of complex electronic display housing plastics by sub/supercritical CO
    Zhang CC; Zhang FS
    J Hazard Mater; 2020 Jan; 382():121140. PubMed ID: 31518770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.
    Nolan M
    J Chem Phys; 2013 Nov; 139(18):184710. PubMed ID: 24320294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion.
    Blank JH; Beckers J; Collignon PF; Rothenberg G
    Chemphyschem; 2007 Dec; 8(17):2490-7. PubMed ID: 18022996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal nanoparticle catalysts beginning to shape-up.
    Roldan Cuenya B
    Acc Chem Res; 2013 Aug; 46(8):1682-91. PubMed ID: 23252675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions.
    Rüdiger J; Bobrowski N; Liotta M; Hoffmann T
    Anal Bioanal Chem; 2017 Oct; 409(25):5975-5985. PubMed ID: 28852788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.
    Chang H; Jong MT; Wang C; Qu R; Du Y; Li J; Hao J
    Environ Sci Technol; 2013 Oct; 47(20):11692-9. PubMed ID: 24024774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Halogen production from aqueous tropospheric particles.
    Herrmann H; Majdik Z; Ervens B; Weise D
    Chemosphere; 2003 Jul; 52(2):485-502. PubMed ID: 12738274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient CeO2 /CoSe2 Nanobelt composite for electrochemical water oxidation.
    Zheng YR; Gao MR; Gao Q; Li HH; Xu J; Wu ZY; Yu SH
    Small; 2015 Jan; 11(2):182-8. PubMed ID: 25115699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isotope fractionation in aqua-gas systems: Cl(2)-HCl-Cl(-), Br(2)-HBr-Br(-) and H(2)S-S(2-).
    Czarnacki M; Hałas S
    Isotopes Environ Health Stud; 2012; 48(1):55-64. PubMed ID: 22092223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.
    Makio H; Fujita T
    Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalyst design for enhanced sustainability through fundamental surface chemistry.
    Personick ML; Montemore MM; Kaxiras E; Madix RJ; Biener J; Friend CM
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
    Goi D; de Leitenburg C; Trovarelli A; Dolcetti G
    Environ Technol; 2004 Dec; 25(12):1397-403. PubMed ID: 15691200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.