BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27131194)

  • 1. Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity.
    Lin CC; Lu TW; Lu HL; Kuo MY; Hsu HC
    Gait Posture; 2016 May; 46():154-60. PubMed ID: 27131194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand.
    Kuo MY; Tsai TY; Lin CC; Lu TW; Hsu HC; Shen WC
    Gait Posture; 2011 Mar; 33(3):379-84. PubMed ID: 21227694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion.
    Lin CC; Chang CL; Lu M; Lu TW; Wu CH
    BMC Vet Res; 2018 Dec; 14(1):389. PubMed ID: 30522489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models.
    Clément J; Dumas R; Hagemeister N; de Guise JA
    J Biomech; 2015 Nov; 48(14):3796-802. PubMed ID: 26472302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft tissue artifact distribution on lower limbs during treadmill gait: Influence of skin markers' location on cluster design.
    Barré A; Jolles BM; Theumann N; Aminian K
    J Biomech; 2015 Jul; 48(10):1965-71. PubMed ID: 25920897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects.
    Stagni R; Fantozzi S; Cappello A; Leardini A
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):320-9. PubMed ID: 15698706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeleton.
    Clément J; de Guise JA; Fuentes A; Hagemeister N
    Gait Posture; 2018 Mar; 61():197-203. PubMed ID: 29353745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What portion of the soft tissue artefact requires compensation when estimating joint kinematics?
    Dumas R; Camomilla V; Bonci T; Chèze L; Cappozzo A
    J Biomech Eng; 2015 Jun; 137(6):064502. PubMed ID: 25867934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft tissue artefacts of skin markers on the lower limb during cycling: Effects of joint angles and pedal resistance.
    Li JD; Lu TW; Lin CC; Kuo MY; Hsu HC; Shen WC
    J Biomech; 2017 Sep; 62():27-38. PubMed ID: 28410738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty.
    Barre A; Thiran JP; Jolles BM; Theumann N; Aminian K
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3131-40. PubMed ID: 23782791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements.
    Banks SA; Fregly BJ; Boniforti F; Reinschmidt C; Romagnoli S
    Knee Surg Sports Traumatol Arthrosc; 2005 Oct; 13(7):551-6. PubMed ID: 15660274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty.
    Mochizuki T; Sato T; Tanifuji O; Kobayashi K; Koga Y; Yamagiwa H; Omori G; Endo N
    J Orthop Sci; 2013 Jan; 18(1):54-60. PubMed ID: 23114856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements.
    Cereatti A; Bonci T; Akbarshahi M; Aminian K; Barré A; Begon M; Benoit DL; Charbonnier C; Dal Maso F; Fantozzi S; Lin CC; Lu TW; Pandy MG; Stagni R; van den Bogert AJ; Camomilla V
    J Biomech; 2017 Sep; 62():5-13. PubMed ID: 28259462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the soft tissue artifact on marker measurements and on the calculation of the helical axis of the knee during a gait cycle: A study on the CAMS-Knee data set.
    Ancillao A; Aertbeliën E; De Schutter J
    Hum Mov Sci; 2021 Dec; 80():102866. PubMed ID: 34509901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface marker cluster translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and impact on knee joint kinematics.
    Benoit DL; Damsgaard M; Andersen MS
    J Biomech; 2015 Jul; 48(10):2124-9. PubMed ID: 25935684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty.
    Shimmin A; Martinez-Martos S; Owens J; Iorgulescu AD; Banks S
    Knee; 2015 Dec; 22(6):522-6. PubMed ID: 25999125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of knee functional calibration with and without the effect of soft tissue artefact.
    Sangeux M; Barré A; Aminian K
    J Biomech; 2017 Sep; 62():53-59. PubMed ID: 27865479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty.
    Watanabe T; Muneta T; Sekiya I; Banks SA
    Knee; 2015 Dec; 22(6):527-34. PubMed ID: 26014342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a machine learning technique for segmentation and pose estimation in single plane fluoroscopy.
    Broberg JS; Chen J; Jensen A; Banks SA; Teeter MG
    J Orthop Res; 2023 Aug; 41(8):1767-1773. PubMed ID: 36691875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.