BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 27131319)

  • 1. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.
    Sharwood RE; Ghannoum O; Whitney SM
    Curr Opin Plant Biol; 2016 Jun; 31():135-42. PubMed ID: 27131319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H; Sharwood RE; Tissue DT; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3669-81. PubMed ID: 24723409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C
    Sharwood RE; Ghannoum O; Kapralov MV; Gunn LH; Whitney SM
    Nat Plants; 2016 Nov; 2():16186. PubMed ID: 27892943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump.
    Jurić I; Hibberd JM; Blatt M; Burroughs NJ
    PLoS Comput Biol; 2019 Sep; 15(9):e1007373. PubMed ID: 31568503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.
    Raines CA
    Plant Cell Environ; 2006 Mar; 29(3):331-9. PubMed ID: 17080589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.
    Christin PA; Salamin N; Muasya AM; Roalson EH; Russier F; Besnard G
    Mol Biol Evol; 2008 Nov; 25(11):2361-8. PubMed ID: 18695049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.
    Sharwood RE
    New Phytol; 2017 Jan; 213(2):494-510. PubMed ID: 27935049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards engineering carboxysomes into C3 plants.
    Hanson MR; Lin MT; Carmo-Silva AE; Parry MA
    Plant J; 2016 Jul; 87(1):38-50. PubMed ID: 26867858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry.
    Sharwood RE; Sonawane BV; Ghannoum O; Whitney SM
    J Exp Bot; 2016 May; 67(10):3137-48. PubMed ID: 27122573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis.
    von Caemmerer S; Hendrickson L; Quinn V; Vella N; Millgate AG; Furbank RT
    Plant Physiol; 2005 Feb; 137(2):747-55. PubMed ID: 15665240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis and Metabolic Maintenance of Rubisco.
    Bracher A; Whitney SM; Hartl FU; Hayer-Hartl M
    Annu Rev Plant Biol; 2017 Apr; 68():29-60. PubMed ID: 28125284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Rubisco and its regulation for greater resource use efficiency.
    Carmo-Silva E; Scales JC; Madgwick PJ; Parry MA
    Plant Cell Environ; 2015 Sep; 38(9):1817-32. PubMed ID: 25123951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing photorespiration for improved crop productivity.
    South PF; Cavanagh AP; Lopez-Calcagno PE; Raines CA; Ort DR
    J Integr Plant Biol; 2018 Dec; 60(12):1217-1230. PubMed ID: 30126060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice.
    Suganami M; Suzuki Y; Tazoe Y; Yamori W; Makino A
    Plant Physiol; 2021 Feb; 185(1):108-119. PubMed ID: 33631807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants.
    Cummins PL
    Front Plant Sci; 2021; 12():662425. PubMed ID: 34539685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C
    Jin K; Chen G; Yang Y; Zhang Z; Lu T
    Plant Cell Environ; 2023 Feb; 46(2):363-378. PubMed ID: 36444099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.