These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27131529)

  • 1. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.
    Liu KY; Herbert JM
    J Chem Phys; 2017 Oct; 147(16):161729. PubMed ID: 29096456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion.
    Richard RM; Lao KU; Herbert JM
    J Phys Chem Lett; 2013 Aug; 4(16):2674-80. PubMed ID: 26706713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-Screened Many-Body Expansion: A Practical Yet Accurate Fragmentation Method for Quantum Chemistry.
    Liu KY; Herbert JM
    J Chem Theory Comput; 2020 Jan; 16(1):475-487. PubMed ID: 31765559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching the complete-basis limit with a truncated many-body expansion.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2013 Dec; 139(22):224102. PubMed ID: 24329051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trouble with the Many-Body Expansion.
    Ouyang JF; Cvitkovic MW; Bettens RP
    J Chem Theory Comput; 2014 Sep; 10(9):3699-707. PubMed ID: 26588515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Many-Body Expansion for Aqueous Systems Revisited: I. Water-Water Interactions.
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2020 Nov; 16(11):6843-6855. PubMed ID: 33064486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation.
    Liu J; Herbert JM
    J Chem Theory Comput; 2016 Feb; 12(2):572-84. PubMed ID: 26730608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many-Body Basis Set Superposition Effect.
    Ouyang JF; Bettens RP
    J Chem Theory Comput; 2015 Nov; 11(11):5132-43. PubMed ID: 26574311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H2O)n, n = 3-10.
    Bates DM; Smith JR; Tschumper GS
    J Chem Theory Comput; 2011 Sep; 7(9):2753-60. PubMed ID: 26605466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization of a B3LYP specific correction for non-covalent interactions and basis set superposition error on a gigantic dataset of CCSD(T) quality non-covalent interaction energies.
    Schneebeli ST; Bochevarov AD; Friesner RA
    J Chem Theory Comput; 2011 Mar; 7(3):658-668. PubMed ID: 22058661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters.
    Bryantsev VS; Diallo MS; van Duin AC; Goddard WA
    J Chem Theory Comput; 2009 Apr; 5(4):1016-26. PubMed ID: 26609610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate and efficient fragmentation approach via the generalized many-body expansion for density matrices.
    Ballesteros F; Tan JA; Lao KU
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37594069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the many-body expansion for large systems. I. Precision considerations.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2014 Jul; 141(1):014108. PubMed ID: 25005278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate.
    Kurtén T; Sundberg MR; Vehkamäki H; Noppel M; Blomqvist J; Kulmala M
    J Phys Chem A; 2006 Jun; 110(22):7178-88. PubMed ID: 16737269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.