These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27131529)

  • 41. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities.
    Zaleśny R; Baranowska-Łączkowska A; Medveď M; Luis JM
    J Chem Theory Comput; 2015 Sep; 11(9):4119-28. PubMed ID: 26575907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of weakly polar interaction energies in polypeptides using density functional and local Møller-Plesset perturbation theory.
    Csontos J; Palermo NY; Murphy RF; Lovas S
    J Comput Chem; 2008 Jun; 29(8):1344-52. PubMed ID: 18172837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Many-body decomposition of the binding energies for OH.(H2O)2 and OH.(H2O)3 complexes.
    Du S; Francisco JS; Schenter GK; Garrett BC
    J Chem Phys; 2008 Feb; 128(8):084307. PubMed ID: 18315046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational study of noncovalent complexes between formamide and formic acid.
    Sánchez-García E; Montero LA; Sander W
    J Phys Chem A; 2006 Nov; 110(46):12613-22. PubMed ID: 17107112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Critical Test of Some Computational Chemistry Methods for Prediction of Gas-Phase Acidities and Basicities.
    Toomsalu E; Koppel IA; Burk P
    J Chem Theory Comput; 2013 Sep; 9(9):3947-58. PubMed ID: 26592390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Matrix isolation infrared and ab initio study of the hydrogen bonding between formic acid and water.
    George L; Sander W
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Nov; 60(13):3225-32. PubMed ID: 15477167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions.
    Brauer B; Kesharwani MK; Martin JM
    J Chem Theory Comput; 2014 Sep; 10(9):3791-9. PubMed ID: 26588524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies.
    Parker TM; Burns LA; Parrish RM; Ryno AG; Sherrill CD
    J Chem Phys; 2014 Mar; 140(9):094106. PubMed ID: 24606352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based
    Liu J; Rana B; Liu KY; Herbert JM
    J Phys Chem Lett; 2019 Jul; 10(14):3877-3886. PubMed ID: 31251619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations.
    Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M
    J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupled-cluster theory based upon the fragment molecular-orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ab initio and analytic intermolecular potentials for Ar-CH(3)OH.
    Tasić U; Alexeev Y; Vayner G; Crawford TD; Windus TL; Hase WL
    Phys Chem Chem Phys; 2006 Oct; 8(40):4678-84. PubMed ID: 17047766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
    Gillan MJ; Alfè D; Bygrave PJ; Taylor CR; Manby FR
    J Chem Phys; 2013 Sep; 139(11):114101. PubMed ID: 24070273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Appraisal of molecular tailoring approach for large clusters.
    Sahu N; Yeole SD; Gadre SR
    J Chem Phys; 2013 Mar; 138(10):104101. PubMed ID: 23514459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.