These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 27131954)
21. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus. Jalali M; Jalali M Chemosphere; 2017 Mar; 171():106-117. PubMed ID: 28013073 [TBL] [Abstract][Full Text] [Related]
22. Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange: comparison of leaching tests applied to soil and soakaway sediment. Kumar M; Furumai H; Kurisu F; Kasuga I Chemosphere; 2013 Jan; 90(2):796-804. PubMed ID: 23123116 [TBL] [Abstract][Full Text] [Related]
23. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill. Gwenzi W; Gora D; Chaukura N; Tauro T Chemosphere; 2016 Mar; 147():144-54. PubMed ID: 26766350 [TBL] [Abstract][Full Text] [Related]
24. Effects of fertilizer industry emissions on local soil contamination: a case study of a phosphate plant on the east Mediterranean coast. Kassir LN; Lartiges B; Ouaini N Environ Technol; 2012; 33(7-9):873-85. PubMed ID: 22720412 [TBL] [Abstract][Full Text] [Related]
25. Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils. Imache AE; Dousset S; Satrallah A; Dahchour A J Environ Sci Health B; 2012; 47(3):161-7. PubMed ID: 22375587 [TBL] [Abstract][Full Text] [Related]
26. Cation and anion leaching and growth of Acacia saligna in bauxite residue sand amended with residue mud, poultry manure and phosphogypsum. Jones BE; Haynes RJ; Phillips IR Environ Sci Pollut Res Int; 2012 Mar; 19(3):835-46. PubMed ID: 21987225 [TBL] [Abstract][Full Text] [Related]
27. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil. Al-Enazy AR; Al-Oud SS; Al-Barakah FN; Usman AR J Sci Food Agric; 2017 Aug; 97(11):3665-3674. PubMed ID: 28106264 [TBL] [Abstract][Full Text] [Related]
28. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Kalkhajeh YK; Huang B; Hu W; Holm PE; Bruun Hansen HC Chemosphere; 2017 Apr; 172():316-324. PubMed ID: 28086160 [TBL] [Abstract][Full Text] [Related]
29. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain. Cui H; Zhang S; Li R; Yi Q; Zheng X; Hu Y; Zhou J Environ Sci Pollut Res Int; 2017 Sep; 24(26):21128-21137. PubMed ID: 28730363 [TBL] [Abstract][Full Text] [Related]
30. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Jin Z; Liu T; Yang Y; Jackson D Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122 [TBL] [Abstract][Full Text] [Related]
31. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Qiutong X; Mingkui Z Ecotoxicol Environ Saf; 2017 Aug; 142():410-416. PubMed ID: 28454053 [TBL] [Abstract][Full Text] [Related]
32. Effects of wood bark and fertilizer amendment on trace element mobility in mine soils, Broken Hill, Australia: implications for mined land reclamation. Munksgaard NC; Lottermoser BG J Environ Qual; 2010; 39(6):2054-62. PubMed ID: 21284303 [TBL] [Abstract][Full Text] [Related]
33. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil. Cui SF; Fu YZ; Zhou BQ; Li JX; He WY; Yu YQ; Yang JY Chemosphere; 2021 Sep; 278():130432. PubMed ID: 33839389 [TBL] [Abstract][Full Text] [Related]
34. Potential of artificial soil preparation for vegetation restoration using red mud and phosphogypsum. Liu Y; Zhang L; Chen L; Xue B; Wang G; Zhu G; Gou W; Yang D Sci Total Environ; 2024 Sep; 941():173553. PubMed ID: 38823691 [TBL] [Abstract][Full Text] [Related]
35. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Smith SR Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760 [TBL] [Abstract][Full Text] [Related]
36. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. Pérez-López R; Alvarez-Valero AM; Nieto JM J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858 [TBL] [Abstract][Full Text] [Related]
37. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles. Al Attar L; Al-Oudat M; Shamali K; Abdul Ghany B; Kanakri S Environ Technol; 2012; 33(1-3):143-52. PubMed ID: 22519097 [TBL] [Abstract][Full Text] [Related]
38. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. de Matos AT; Fontes MP; da Costa LM; Martinez MA Environ Pollut; 2001; 111(3):429-35. PubMed ID: 11202747 [TBL] [Abstract][Full Text] [Related]
39. Adsorption-desorption and leaching of pyraclostrobin in Indian soils. Reddy SN; Gupta S; Gajbhiye VT J Environ Sci Health B; 2013; 48(11):948-59. PubMed ID: 23998307 [TBL] [Abstract][Full Text] [Related]
40. Leaching characteristics of residual lateritic soils stabilised with fly ash and lime for geotechnical applications. Goswami RK; Mahanta C Waste Manag; 2007; 27(4):466-81. PubMed ID: 17118641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]