These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27131963)
41. Automated high confidence compound identification of electron ionization mass spectra for nontargeted analysis. Bendik J; Kalia R; Sukumaran J; Richardot WH; Hoh E; Kelley ST J Chromatogr A; 2021 Dec; 1660():462656. PubMed ID: 34798444 [TBL] [Abstract][Full Text] [Related]
42. A practical methodology to measure unbiased gas chromatographic retention factor vs. temperature relationships. Peng B; Kuo MY; Yang P; Hewitt JT; Boswell PG J Chromatogr A; 2014 Dec; 1374():207-215. PubMed ID: 25496658 [TBL] [Abstract][Full Text] [Related]
43. GCalignR: An R package for aligning gas-chromatography data for ecological and evolutionary studies. Ottensmann M; Stoffel MA; Nichols HJ; Hoffman JI PLoS One; 2018; 13(6):e0198311. PubMed ID: 29879149 [TBL] [Abstract][Full Text] [Related]
44. Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Mihaleva VV; Verhoeven HA; de Vos RC; Hall RD; van Ham RC Bioinformatics; 2009 Mar; 25(6):787-94. PubMed ID: 19176550 [TBL] [Abstract][Full Text] [Related]
45. System design for integrated comprehensive and multidimensional gas chromatography with mass spectrometry and olfactometry. Chin ST; Eyres GT; Marriott PJ Anal Chem; 2012 Nov; 84(21):9154-62. PubMed ID: 23101663 [TBL] [Abstract][Full Text] [Related]
46. Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments. Niu W; Knight E; Xia Q; McGarvey BD J Chromatogr A; 2014 Dec; 1374():199-206. PubMed ID: 25435458 [TBL] [Abstract][Full Text] [Related]
47. An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Kim S; Fang A; Wang B; Jeong J; Zhang X Bioinformatics; 2011 Jun; 27(12):1660-6. PubMed ID: 21493650 [TBL] [Abstract][Full Text] [Related]
48. "Retention projection" enables reliable use of shared gas chromatographic retention data across laboratories, instruments, and methods. Barnes BB; Wilson MB; Carr PW; Vitha MF; Broeckling CD; Heuberger AL; Prenni J; Janis GC; Corcoran H; Snow NH; Chopra S; Dhandapani R; Tawfall A; Sumner LW; Boswell PG Anal Chem; 2013 Dec; 85(23):11650-7. PubMed ID: 24205931 [TBL] [Abstract][Full Text] [Related]
49. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. Phua LC; Koh PK; Cheah PY; Ho HK; Chan EC J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 937():103-13. PubMed ID: 24029555 [TBL] [Abstract][Full Text] [Related]
50. A Novel Approach of Matching Mass-to-Charge Ratio for Compound Identification in Gas Chromatography-Mass Spectrometry. Xie C; Yu J; Huang S; Gao W; Tang K J AOAC Int; 2019 Mar; 102(2):638-645. PubMed ID: 30446021 [No Abstract] [Full Text] [Related]
51. Gas chromatography - mass spectrometry data processing made easy. Johnsen LG; Skou PB; Khakimov B; Bro R J Chromatogr A; 2017 Jun; 1503():57-64. PubMed ID: 28499599 [TBL] [Abstract][Full Text] [Related]
52. Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Schymanski EL; Gallampois CM; Krauss M; Meringer M; Neumann S; Schulze T; Wolf S; Brack W Anal Chem; 2012 Apr; 84(7):3287-95. PubMed ID: 22414024 [TBL] [Abstract][Full Text] [Related]
53. Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. Hušek P; Švagera Z; Hanzlíková D; Řimnáčová L; Zahradníčková H; Opekarová I; Šimek P J Chromatogr A; 2016 Apr; 1443():211-32. PubMed ID: 27012787 [TBL] [Abstract][Full Text] [Related]
54. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. Li Y; Ruan Q; Li Y; Ye G; Lu X; Lin X; Xu G J Chromatogr A; 2012 Sep; 1255():228-36. PubMed ID: 22342183 [TBL] [Abstract][Full Text] [Related]
55. Isotope abundance analysis methods and software for improved sample identification with supersonic gas chromatography/mass spectrometry. Alon T; Amirav A Rapid Commun Mass Spectrom; 2006; 20(17):2579-88. PubMed ID: 16897787 [TBL] [Abstract][Full Text] [Related]
56. Analysis of mouse liver metabolites by GC × GC-TOF MS. Shi X; Yin X; Zhang X Methods Mol Biol; 2014; 1198():99-105. PubMed ID: 25270925 [TBL] [Abstract][Full Text] [Related]
57. δ13C analysis of amino acids in human hair using trimethylsilyl derivatives and gas chromatography/combustion/isotope ratio mass spectrometry. An Y; Schwartz Z; Jackson GP Rapid Commun Mass Spectrom; 2013 Jul; 27(13):1481-9. PubMed ID: 23722682 [TBL] [Abstract][Full Text] [Related]
58. Current challenges and developments in GC-MS based metabolite profiling technology. Kopka J J Biotechnol; 2006 Jun; 124(1):312-22. PubMed ID: 16434119 [TBL] [Abstract][Full Text] [Related]
59. Methods of discovery-based and targeted metabolite analysis by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection. Marney LC; Hoggard JC; Skogerboe KJ; Synovec RE Methods Mol Biol; 2014; 1198():83-97. PubMed ID: 25270924 [TBL] [Abstract][Full Text] [Related]