BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27131992)

  • 1. Hydrazide d-luciferin for in vitro selective detection and intratumoral imaging of Cu(2.).
    Zheng Z; Wang L; Tang W; Chen P; Zhu H; Yuan Y; Li G; Zhang H; Liang G
    Biosens Bioelectron; 2016 Sep; 83():200-4. PubMed ID: 27131992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescent Turn-On Probe for Sensing Hypochlorite in Vitro and in Tumors.
    Chen P; Zheng Z; Zhu Y; Dong Y; Wang F; Liang G
    Anal Chem; 2017 Jun; 89(11):5693-5696. PubMed ID: 28485134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Bioluminescence Turn-On To Detect Cysteine in Vitro and in Vivo.
    Zhang M; Wang L; Zhao Y; Wang F; Wu J; Liang G
    Anal Chem; 2018 Apr; 90(8):4951-4954. PubMed ID: 29606000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bioluminescent Probe for Imaging Endogenous Peroxynitrite in Living Cells and Mice.
    Li JB; Chen L; Wang Q; Liu HW; Hu XX; Yuan L; Zhang XB
    Anal Chem; 2018 Mar; 90(6):4167-4173. PubMed ID: 29468879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence imaging of carbon monoxide in living cells based on a selective deiodination reaction.
    Wang A; Li X; Ju Y; Chen D; Lu J
    Analyst; 2020 Jan; 145(2):550-556. PubMed ID: 31764924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence Sensing of γ-Glutamyltranspeptidase Activity In Vitro and In Vivo.
    Hai Z; Wu J; Wang L; Xu J; Zhang H; Liang G
    Anal Chem; 2017 Jul; 89(13):7017-7021. PubMed ID: 28605900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice.
    Godinat A; Park HM; Miller SC; Cheng K; Hanahan D; Sanman LE; Bogyo M; Yu A; Nikitin GF; Stahl A; Dubikovskaya EA
    ACS Chem Biol; 2013 May; 8(5):987-99. PubMed ID: 23463944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cage the firefly luciferin! - a strategy for developing bioluminescent probes.
    Li J; Chen L; Du L; Li M
    Chem Soc Rev; 2013 Jan; 42(2):662-76. PubMed ID: 23099531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging.
    Steinhardt RC; O'Neill JM; Rathbun CM; McCutcheon DC; Paley MA; Prescher JA
    Chemistry; 2016 Mar; 22(11):3671-5. PubMed ID: 26784889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo bioluminescence imaging of labile iron pools in a murine model of sepsis with a highly selective probe.
    Feng P; Ma L; Xu F; Gou X; Du L; Ke B; Li M
    Talanta; 2019 Oct; 203():29-33. PubMed ID: 31202341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Firefly Luciferin Analogues and Evaluation of the Luminescent Properties.
    Ioka S; Saitoh T; Iwano S; Suzuki K; Maki SA; Miyawaki A; Imoto M; Nishiyama S
    Chemistry; 2016 Jun; 22(27):9330-7. PubMed ID: 27220106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridone Luciferins and Mutant Luciferases for Bioluminescence Imaging.
    Zhang BS; Jones KA; McCutcheon DC; Prescher JA
    Chembiochem; 2018 Mar; 19(5):470-477. PubMed ID: 29384255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.
    Mofford DM; Adams ST; Reddy GS; Reddy GR; Miller SC
    J Am Chem Soc; 2015 Jul; 137(27):8684-7. PubMed ID: 26120870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake kinetics and biodistribution of 14C-D-luciferin--a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging.
    Berger F; Paulmurugan R; Bhaumik S; Gambhir SS
    Eur J Nucl Med Mol Imaging; 2008 Dec; 35(12):2275-85. PubMed ID: 18661130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoluciferin 4-hydroxyphenyl amide enables bioluminescence detection of endogenous tyrosinase.
    Tang C; Jin L; Lin Y; Su J; Sun Y; Liu P; Li Q; Wang G; Zhang Z; Du L; Li M
    Org Biomol Chem; 2018 Dec; 16(47):9197-9203. PubMed ID: 30467562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a Tumor.
    Wang C; Du W; Zhang T; Liang G
    Anal Chem; 2020 Dec; 92(23):15275-15279. PubMed ID: 33170646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.
    Kuchimaru T; Iwano S; Kiyama M; Mitsumata S; Kadonosono T; Niwa H; Maki S; Kizaka-Kondoh S
    Nat Commun; 2016 Jun; 7():11856. PubMed ID: 27297211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu(2+) detection.
    Tang L; He P; Zhong K; Hou S; Bian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():246-51. PubMed ID: 27391231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging tools for bioluminescence imaging.
    Zambito G; Chawda C; Mezzanotte L
    Curr Opin Chem Biol; 2021 Aug; 63():86-94. PubMed ID: 33770744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioluminescent strategy for imaging palladium in living cells and animals with chemoselective probes based on luciferin-luciferase system.
    Ke B; Chen H; Cui Y; Ma L; Liu Y; Hu X; Bai Y; Du L; Li M
    Talanta; 2019 Mar; 194():925-929. PubMed ID: 30609626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.