BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27132524)

  • 1. Radiation-induced brain injury: low-hanging fruit for neuroregeneration.
    Burns TC; Awad AJ; Li MD; Grant GA
    Neurosurg Focus; 2016 May; 40(5):E3. PubMed ID: 27132524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation.
    Xu L; Ryu J; Hiel H; Menon A; Aggarwal A; Rha E; Mahairaki V; Cummings BJ; Koliatsos VE
    Stem Cell Res Ther; 2015 May; 6(1):93. PubMed ID: 25971252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation.
    Piao J; Major T; Auyeung G; Policarpio E; Menon J; Droms L; Gutin P; Uryu K; Tchieu J; Soulet D; Tabar V
    Cell Stem Cell; 2015 Feb; 16(2):198-210. PubMed ID: 25658373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury.
    Koutsoudaki PN; Papastefanaki F; Stamatakis A; Kouroupi G; Xingi E; Stylianopoulou F; Matsas R
    Glia; 2016 May; 64(5):763-79. PubMed ID: 26712314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation injury and neurogenesis.
    Monje ML; Palmer T
    Curr Opin Neurol; 2003 Apr; 16(2):129-34. PubMed ID: 12644738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.
    Shi H; Hu X; Leak RK; Shi Y; An C; Suenaga J; Chen J; Gao Y
    Exp Neurol; 2015 Oct; 272():17-25. PubMed ID: 25819104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury.
    Chu C; Gao Y; Lan X; Lin J; Thomas AM; Li S
    Stem Cell Rev Rep; 2020 Aug; 16(4):639-649. PubMed ID: 32418118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-induced cognitive impairment--from bench to bedside.
    Greene-Schloesser D; Robbins ME
    Neuro Oncol; 2012 Sep; 14 Suppl 4(Suppl 4):iv37-44. PubMed ID: 23095829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury.
    Kleindienst A; McGinn MJ; Harvey HB; Colello RJ; Hamm RJ; Bullock MR
    J Neurotrauma; 2005 Jun; 22(6):645-55. PubMed ID: 15941374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells.
    Siebert JR; Stelzner DJ; Osterhout DJ
    Exp Neurol; 2011 Sep; 231(1):19-29. PubMed ID: 21596037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review.
    Mekhail M; Almazan G; Tabrizian M
    Prog Neurobiol; 2012 Mar; 96(3):322-39. PubMed ID: 22307058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.
    Blaya MO; Tsoulfas P; Bramlett HM; Dietrich WD
    Exp Neurol; 2015 Feb; 264():67-81. PubMed ID: 25483396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis.
    Jadasz JJ; Aigner L; Rivera FJ; Küry P
    Cell Tissue Res; 2012 Jul; 349(1):331-47. PubMed ID: 22322424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cells with proliferative activity after a brain injury.
    Tatsumi K; Haga S; Matsuyoshi H; Inoue M; Manabe T; Makinodan M; Wanaka A
    Neurochem Int; 2005 Apr; 46(5):381-9. PubMed ID: 15737436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation.
    Askari N; Yaghoobi MM; Shamsara M; Esmaeili-Mahani S
    Neuroscience; 2015 Oct; 305():197-208. PubMed ID: 26254831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.
    Flygt J; Gumucio A; Ingelsson M; Skoglund K; Holm J; Alafuzoff I; Marklund N
    J Neuropathol Exp Neurol; 2016 Jun; 75(6):503-15. PubMed ID: 27105664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically engineered human neural stem cells for brain repair in neurological diseases.
    Kim SU
    Brain Dev; 2007 May; 29(4):193-201. PubMed ID: 17303360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord.
    Atkinson SL; Li YQ; Wong CS
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):535-44. PubMed ID: 15890598
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.