BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 27132685)

  • 21. Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework.
    Fahrner M; Föll MC; Grüning BA; Bernt M; Röst H; Schilling O
    Gigascience; 2022 Feb; 11():. PubMed ID: 35166338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SAINT: probabilistic scoring of affinity purification-mass spectrometry data.
    Choi H; Larsen B; Lin ZY; Breitkreutz A; Mellacheruvu D; Fermin D; Qin ZS; Tyers M; Gingras AC; Nesvizhskii AI
    Nat Methods; 2011 Jan; 8(1):70-3. PubMed ID: 21131968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries.
    Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M
    Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry.
    Trinkle-Mulcahy L
    Proteomics; 2012 May; 12(10):1623-38. PubMed ID: 22610586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ROCS: a reproducibility index and confidence score for interaction proteomics studies.
    Dazard JE; Saha S; Ewing RM
    BMC Bioinformatics; 2012 Jun; 13():128. PubMed ID: 22682516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing strategies and software solutions for data-independent acquisition in mass spectrometry.
    Bilbao A; Varesio E; Luban J; Strambio-De-Castillia C; Hopfgartner G; Müller M; Lisacek F
    Proteomics; 2015 Mar; 15(5-6):964-80. PubMed ID: 25430050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.
    Teleman J; Hauri S; Malmström J
    J Proteome Res; 2017 Jul; 16(7):2384-2392. PubMed ID: 28516777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions.
    Morris JH; Knudsen GM; Verschueren E; Johnson JR; Cimermancic P; Greninger AL; Pico AR
    Nat Protoc; 2014 Nov; 9(11):2539-54. PubMed ID: 25275790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics.
    Pietilä S; Suomi T; Aakko J; Elo LL
    Methods Mol Biol; 2019; 1871():455-465. PubMed ID: 30276755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry.
    Hesketh GG; Youn JY; Samavarchi-Tehrani P; Raught B; Gingras AC
    Methods Mol Biol; 2017; 1550():115-136. PubMed ID: 28188527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ProHits: integrated software for mass spectrometry-based interaction proteomics.
    Liu G; Zhang J; Larsen B; Stark C; Breitkreutz A; Lin ZY; Breitkreutz BJ; Ding Y; Colwill K; Pasculescu A; Pawson T; Wrana JL; Nesvizhskii AI; Raught B; Tyers M; Gingras AC
    Nat Biotechnol; 2010 Oct; 28(10):1015-7. PubMed ID: 20944583
    [No Abstract]   [Full Text] [Related]  

  • 33. Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas.
    Walzer M; García-Seisdedos D; Prakash A; Brack P; Crowther P; Graham RL; George N; Mohammed S; Moreno P; Papatheodorou I; Hubbard SJ; Vizcaíno JA
    Sci Data; 2022 Jun; 9(1):335. PubMed ID: 35701420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New targeted approaches for the quantification of data-independent acquisition mass spectrometry.
    Bruderer R; Sondermann J; Tsou CC; Barrantes-Freer A; Stadelmann C; Nesvizhskii AI; Schmidt M; Reiter L; Gomez-Varela D
    Proteomics; 2017 May; 17(9):. PubMed ID: 28319648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From raw data to biological discoveries: a computational analysis pipeline for mass spectrometry-based proteomics.
    Lavallée-Adam M; Park SK; Martínez-Bartolomé S; He L; Yates JR
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1820-6. PubMed ID: 26002791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing Protein-Protein Interactions Using Mass Spectrometry: Challenges and Opportunities.
    Smits AH; Vermeulen M
    Trends Biotechnol; 2016 Oct; 34(10):825-834. PubMed ID: 26996615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC-MS/MS.
    Yan B; Shi M; Cai S; Su Y; Chen R; Huang C; Chen DDY
    Anal Chem; 2023 Nov; 95(45):16558-16566. PubMed ID: 37906674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cost-benefit analysis of multidimensional fractionation of affinity purification-mass spectrometry samples.
    Dunham WH; Larsen B; Tate S; Badillo BG; Goudreault M; Tehami Y; Kislinger T; Gingras AC
    Proteomics; 2011 Jul; 11(13):2603-12. PubMed ID: 21630450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries.
    Pino LK; Just SC; MacCoss MJ; Searle BC
    Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.