BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27132820)

  • 1. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2016 Oct; 208():26-34. PubMed ID: 27132820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral and colorimetric characteristics of metal chelates of acylated cyanidin derivatives.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2017 Apr; 221():1088-1095. PubMed ID: 27979063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development.
    Sigurdson GT; Giusti MM
    J Agric Food Chem; 2014 Jul; 62(29):6955-65. PubMed ID: 24547952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2017 Nov; 234():131-138. PubMed ID: 28551216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acylated Anthocyanins from Red Cabbage and Purple Sweet Potato Can Bind Metal Ions and Produce Stable Blue Colors.
    Fenger JA; Sigurdson GT; Robbins RJ; Collins TM; Giusti MM; Dangles O
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life.
    Chatham LA; Howard JE; Juvik JA
    Food Chem; 2020 Apr; 310():125734. PubMed ID: 31791725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and characterization of anthocyanin pigments from Iris flowers and metal complex formation.
    Bahreini Z; Abedi M; Ashori A; Parach A
    Heliyon; 2024 Jun; 10(11):e31795. PubMed ID: 38832280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Chelates of Petunidin Derivatives Exhibit Enhanced Color and Stability.
    Tang P; Giusti MM
    Foods; 2020 Oct; 9(10):. PubMed ID: 33050218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of location, type, and number of glycosidic substitutions on the color expression of o-dihydroxylated anthocyanidins.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2018 Dec; 268():416-423. PubMed ID: 30064778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of anthocyanin extracts from maize kernels.
    Moreno YS; Sánchez GS; Hernández DR; Lobato NR
    J Chromatogr Sci; 2005 Oct; 43(9):483-7. PubMed ID: 16212795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.
    Ahmadiani N; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2016 Apr; 197(Pt A):900-6. PubMed ID: 26617032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties.
    Buchweitz M; Carle R; Kammerer DR
    Food Chem; 2012 Dec; 135(4):3010-9. PubMed ID: 22980904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution.
    Fenger JA; Moloney M; Robbins RJ; Collins TM; Dangles O
    Food Funct; 2019 Oct; 10(10):6740-6751. PubMed ID: 31576890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review.
    Wang J; Zhao Y; Sun B; Yang Y; Wang S; Feng Z; Li J
    Food Res Int; 2024 Jan; 176():113837. PubMed ID: 38163689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color profiles and stability of acylated and nonacylated anthocyanins as novel pigment sources in a lipstick model: A viable alternative to synthetic colorants.
    Westfall A; Giusti M
    J Cosmet Sci; 2017; 68(3):233-244. PubMed ID: 29616623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molar absorptivities (ε) and spectral and colorimetric characteristics of purple sweet potato anthocyanins.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2019 Jan; 271():497-504. PubMed ID: 30236708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability Enhancement of Anthocyanins from Blackcurrant (
    Azman EM; Yusof N; Chatzifragkou A; Charalampopoulos D
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-pigmentation of black chokeberry (Aronia melanocarpa) anthocyanins with phenolic co-pigments and herbal extracts.
    Klisurova D; Petrova I; Ognyanov M; Georgiev Y; Kratchanova M; Denev P
    Food Chem; 2019 May; 279():162-170. PubMed ID: 30611475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cis-Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins.
    Sigurdson GT; Tang P; Giusti MM
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29518915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthocyanin kinetics are dependent on anthocyanin structure.
    Novotny JA; Clevidence BA; Kurilich AC
    Br J Nutr; 2012 Feb; 107(4):504-9. PubMed ID: 22300834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.