BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27132865)

  • 1. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).
    Parsons ZD; Ruddraraju KV; Santo N; Gates KS
    Bioorg Med Chem; 2016 Jun; 24(12):2631-40. PubMed ID: 27132865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of 1,3-Diketones with a Dipeptide Isothiazolidin-3-one: Toward Agents That Covalently Capture Oxidized Protein Tyrosine Phosphatase 1B.
    Ruddraraju KV; Parsons ZD; Llufrio EM; Frost NL; Gates KS
    J Org Chem; 2015 Dec; 80(24):12015-26. PubMed ID: 26517018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B.
    Sivaramakrishnan S; Cummings AH; Gates KS
    Bioorg Med Chem Lett; 2010 Jan; 20(2):444-7. PubMed ID: 20015650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of an organoruthenium anticancer complex with 2-mercaptobenzanilide--a model for the active-site cysteine of protein tyrosine phosphatase 1B.
    Han Y; Luo Q; Hao X; Li X; Wang F; Hu W; Wu K; Lü S; Sadler PJ
    Dalton Trans; 2011 Nov; 40(43):11519-29. PubMed ID: 21960108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate.
    Sarma BK; Mugesh G
    J Am Chem Soc; 2007 Jul; 129(28):8872-81. PubMed ID: 17585764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
    Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F
    Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.
    Parsons ZD; Gates KS
    Biochemistry; 2013 Sep; 52(37):6412-23. PubMed ID: 23957891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
    Defelipe LA; Lanzarotti E; Gauto D; Marti MA; Turjanski AG
    PLoS Comput Biol; 2015 Mar; 11(3):e1004051. PubMed ID: 25741692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example.
    Salmeen A; Barford D
    Methods Mol Biol; 2008; 476():101-16. PubMed ID: 19157012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H
    Dagnell M; Pace PE; Cheng Q; Frijhoff J; Östman A; Arnér ESJ; Hampton MB; Winterbourn CC
    J Biol Chem; 2017 Sep; 292(35):14371-14380. PubMed ID: 28684416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity.
    Sivaramakrishnan S; Keerthi K; Gates KS
    J Am Chem Soc; 2005 Aug; 127(31):10830-1. PubMed ID: 16076179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.
    Punthasee P; Laciak AR; Cummings AH; Ruddraraju KV; Lewis SM; Hillebrand R; Singh H; Tanner JJ; Gates KS
    Biochemistry; 2017 Apr; 56(14):2051-2060. PubMed ID: 28345882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of protein tyrosine phosphatase 1B in the type 2 diabetes and obesity].
    Wang C; Wang L; Yang Z
    Yi Chuan; 2004 Nov; 26(6):941-6. PubMed ID: 15640130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of protein tyrosine phosphatases by dietary isothiocyanates.
    Lewis SM; Li Y; Catalano MJ; Laciak AR; Singh H; Seiner DR; Reilly TJ; Tanner JJ; Gates KS
    Bioorg Med Chem Lett; 2015 Oct; 25(20):4549-52. PubMed ID: 26338358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases.
    Krishnan N; Bencze G; Cohen P; Tonks NK
    FEBS J; 2013 Jun; 280(12):2830-41. PubMed ID: 23578302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific inhibition of sensitized protein tyrosine phosphatase 1B (PTP1B) with a biarsenical probe.
    Davis OB; Bishop AC
    Bioconjug Chem; 2012 Feb; 23(2):272-8. PubMed ID: 22263876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.