These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2713326)

  • 1. Effects of conversion of an invariant tryptophan residue to phenylalanine on the function of human dihydrofolate reductase.
    Huang SM; Delcamp TJ; Tan XH; Smith PL; Prendergast NJ; Freisheim JH
    Biochemistry; 1989 Jan; 28(2):471-8. PubMed ID: 2713326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis.
    Schweitzer BI; Srimatkandada S; Gritsman H; Sheridan R; Venkataraghavan R; Bertino JR
    J Biol Chem; 1989 Dec; 264(34):20786-95. PubMed ID: 2684985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the conserved active site residue tryptophan-24 of human dihydrofolate reductase as revealed by mutagenesis.
    Beard WA; Appleman JR; Huang SM; Delcamp TJ; Freisheim JH; Blakley RL
    Biochemistry; 1991 Feb; 30(5):1432-40. PubMed ID: 1991124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of conversion of phenylalanine-31 to leucine on the function of human dihydrofolate reductase.
    Prendergast NJ; Appleman JR; Delcamp TJ; Blakley RL; Freisheim JH
    Biochemistry; 1989 May; 28(11):4645-50. PubMed ID: 2765506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis.
    Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH
    J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim.
    Thillet J; Absil J; Stone SR; Pictet R
    J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J
    Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of arginine to lysine at position 70 of human dihydrofolate reductase: generation of a methotrexate-insensitive mutant enzyme.
    Thompson PD; Freisheim JH
    Biochemistry; 1991 Aug; 30(33):8124-30. PubMed ID: 1907850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dihydrofolate reductase from Escherichia coli: probing the role of aspartate-27 and phenylalanine-137 in enzyme conformation and the binding of NADPH.
    Dunn SM; Lanigan TM; Howell EE
    Biochemistry; 1990 Sep; 29(37):8569-76. PubMed ID: 2271540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and site-directed mutagenesis of human dihydrofolate reductase.
    Prendergast NJ; Delcamp TJ; Smith PL; Freisheim JH
    Biochemistry; 1988 May; 27(10):3664-71. PubMed ID: 3044447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase.
    Huang S; Appleman R; Tan XH; Thompson PD; Blakley RL; Sheridan RP; Venkataraghavan R; Freisheim JH
    Biochemistry; 1990 Sep; 29(35):8063-9. PubMed ID: 2124504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of single-tryptophan mutations on R67 dihydrofolate reductase.
    West FW; Seo HS; Bradrick TD; Howell EE
    Biochemistry; 2000 Apr; 39(13):3678-89. PubMed ID: 10736167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Chen JT; Taira K; Tu CP; Benkovic SJ
    Biochemistry; 1987 Jun; 26(13):4093-100. PubMed ID: 3307917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact on catalysis of secondary structural manipulation of the alpha C-helix of Escherichia coli dihydrofolate reductase.
    Li LY; Benkovic SJ
    Biochemistry; 1991 Feb; 30(6):1470-8. PubMed ID: 1993166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase.
    Huang Z; Wagner CR; Benkovic SJ
    Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase.
    Ohmae E; Sasaki Y; Gekko K
    J Biochem; 2001 Sep; 130(3):439-47. PubMed ID: 11530021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of point mutations in a hinge region on the stability, folding, and enzymatic activity of Escherichia coli dihydrofolate reductase.
    Ahrweiler PM; Frieden C
    Biochemistry; 1991 Aug; 30(31):7801-9. PubMed ID: 1868058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variants of human dihydrofolate reductase with substitutions at leucine-22: effect on catalytic and inhibitor binding properties.
    Ercikan-Abali EA; Waltham MC; Dicker AP; Schweitzer BI; Gritsman H; Banerjee D; Bertino JR
    Mol Pharmacol; 1996 Mar; 49(3):430-7. PubMed ID: 8643082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis.
    Nakano T; Spencer HT; Appleman JR; Blakley RL
    Biochemistry; 1994 Aug; 33(33):9945-52. PubMed ID: 8061003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.