BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2713327)

  • 1. Activity and spectroscopic properties of bacterial D-amino acid transaminase after multiple site-directed mutagenesis of a single tryptophan residue.
    Martínez del Pozo A; Merola M; Ueno H; Manning JM; Tanizawa K; Nishimura K; Asano S; Tanaka H; Soda K; Ringe D
    Biochemistry; 1989 Jan; 28(2):510-6. PubMed ID: 2713327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of pyridoxal 5'-phosphate with tryptophan-139 at the subunit interface of dimeric D-amino acid transaminase.
    Martinez del Pozo A; van Ophem PW; Ringe D; Petsko G; Soda K; Manning JM
    Biochemistry; 1996 Feb; 35(7):2112-6. PubMed ID: 8652553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of the cysteinyl residues and the active-site serine residue of bacterial D-amino acid transaminase.
    Merola M; Martínez del Pozo A; Ueno H; Recsei P; Di Donato A; Manning JM; Tanizawa K; Masu Y; Asano S; Tanaka H
    Biochemistry; 1989 Jan; 28(2):505-9. PubMed ID: 2496746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.
    Futaki S; Ueno H; Martinez del Pozo A; Pospischil MA; Manning JM; Ringe D; Stoddard B; Tanizawa K; Yoshimura T; Soda K
    J Biol Chem; 1990 Dec; 265(36):22306-12. PubMed ID: 2125047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and stereochemical comparison of wild-type and active-site K145Q mutant enzyme of bacterial D-amino acid transaminase.
    Bhatia MB; Futaki S; Ueno H; Manning JM; Ringe D; Yoshimura T; Soda K
    J Biol Chem; 1993 Apr; 268(10):6932-8. PubMed ID: 8463224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible dissociation/association of D-amino acid transaminase subunits: properties of isolated active dimers and inactive monomers.
    Kishimoto K; Yasuda C; Manning JM
    Biochemistry; 2000 Jan; 39(2):381-7. PubMed ID: 10630999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial reactions of bacterial D-amino acid transaminase with asparagine substituted for the lysine that binds coenzyme pyridoxal 5'-phosphate.
    Yoshimura T; Bhatia MB; Manning JM; Ringe D; Soda K
    Biochemistry; 1992 Dec; 31(47):11748-54. PubMed ID: 1445909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic ability and stability of two recombinant mutants of D-amino acid transaminase involved in coenzyme binding.
    Van Ophem PW; Pospischil MA; Ringe D; Peisach D; Petsko G; Soda K; Manning JM
    Protein Sci; 1995 Dec; 4(12):2578-86. PubMed ID: 8580849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of leucine 201 of thermostable D-amino acid aminotransferase from a thermophile, Bacillus sp. YM-1.
    Kishimoto K; Yoshimura T; Esaki N; Sugio S; Manning JM; Soda K
    J Biochem; 1995 Apr; 117(4):691-6. PubMed ID: 7592528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity.
    van Ophem PW; Peisach D; Erickson SD; Soda K; Ringe D; Manning JM
    Biochemistry; 1999 Jan; 38(4):1323-31. PubMed ID: 9930994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of the amino acid residues in beta-strand III [Val30-Val36] of D-amino acid aminotransferase of Bacillus sp. YM-1.
    Ro HS; Hong SP; Seo HJ; Yoshimura T; Esaki N; Soda K; Kim HS; Sung MH
    FEBS Lett; 1996 Dec; 398(2-3):141-5. PubMed ID: 8977094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism studies of the coenzyme environment in the active sites of mutant forms of the beta-subunit in the tryptophan synthase alpha 2 beta 2 complex.
    Kayastha AM; Sawa Y; Nagata S; Kanzaki H; Miles EW
    Indian J Biochem Biophys; 1991; 28(5-6):352-7. PubMed ID: 1812066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine.
    Nishimura K; Tanizawa K; Yoshimura T; Esaki N; Futaki S; Manning JM; Soda K
    Biochemistry; 1991 Apr; 30(16):4072-7. PubMed ID: 1902115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The environments of Trp-248 and Trp-330 in tryptophan indole-lyase from Escherichia coli.
    Phillips RS; Gollnick P
    FEBS Lett; 1990 Jul; 268(1):213-6. PubMed ID: 2200710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of conserved C-terminal tyrosine and tryptophan residues of PsbO, the photosystem II manganese-stabilizing protein, alters its activity and fluorescence properties.
    Wyman AJ; Popelkova H; Yocum CF
    Biochemistry; 2008 Jun; 47(24):6490-8. PubMed ID: 18500826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination.
    Tanizawa K; Masu Y; Asano S; Tanaka H; Soda K
    J Biol Chem; 1989 Feb; 264(5):2445-9. PubMed ID: 2914916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation.
    Dominici P; Moore PS; Castellani S; Bertoldi M; Voltattorni CB
    Protein Sci; 1997 Sep; 6(9):2007-15. PubMed ID: 9300500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.