These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 2713344)
1. Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro. Clark JM; Beardsley GP Biochemistry; 1989 Jan; 28(2):775-9. PubMed ID: 2713344 [TBL] [Abstract][Full Text] [Related]
2. Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro. Clark JM; Beardsley GP Biochemistry; 1987 Aug; 26(17):5398-403. PubMed ID: 3676259 [TBL] [Abstract][Full Text] [Related]
3. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro. Clark JM; Beardsley GP Nucleic Acids Res; 1986 Jan; 14(2):737-49. PubMed ID: 3511447 [TBL] [Abstract][Full Text] [Related]
4. Functional consequences of the arabinosylcytosine structural lesion in DNA. Mikita T; Beardsley GP Biochemistry; 1988 Jun; 27(13):4698-705. PubMed ID: 2458756 [TBL] [Abstract][Full Text] [Related]
5. Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA. Zhang QM; Sugiyama H; Miyabe I; Matsuda S; Saito I; Yonei S Nucleic Acids Res; 1997 Oct; 25(20):3969-73. PubMed ID: 9321644 [TBL] [Abstract][Full Text] [Related]
6. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. Takata K; Shimizu T; Iwai S; Wood RD J Biol Chem; 2006 Aug; 281(33):23445-55. PubMed ID: 16787914 [TBL] [Abstract][Full Text] [Related]
8. Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue. McNulty JM; Jerkovic B; Bolton PH; Basu AK Chem Res Toxicol; 1998 Jun; 11(6):666-73. PubMed ID: 9625735 [TBL] [Abstract][Full Text] [Related]
9. Processing of DNA base damage by DNA polymerases. Dihydrothymine and beta-ureidoisobutyric acid as models for instructive and noninstructive lesions. Ide H; Petrullo LA; Hatahet Z; Wallace SS J Biol Chem; 1991 Jan; 266(3):1469-77. PubMed ID: 1988431 [TBL] [Abstract][Full Text] [Related]
10. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases. Belguise-Valladier P; Maki H; Sekiguchi M; Fuchs RP J Mol Biol; 1994 Feb; 236(1):151-64. PubMed ID: 8107100 [TBL] [Abstract][Full Text] [Related]
11. Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. Fischhaber PL; Gerlach VL; Feaver WJ; Hatahet Z; Wallace SS; Friedberg EC J Biol Chem; 2002 Oct; 277(40):37604-11. PubMed ID: 12145297 [TBL] [Abstract][Full Text] [Related]
12. Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. Hayes RC; LeClerc JE Nucleic Acids Res; 1986 Jan; 14(2):1045-61. PubMed ID: 3945552 [TBL] [Abstract][Full Text] [Related]
13. Primer extension by various polymerases using oligonucleotide templates containing stereoisomeric benzo[a]pyrene-deoxyadenosine adducts. Christner DF; Lakshman MK; Sayer JM; Jerina DM; Dipple A Biochemistry; 1994 Nov; 33(47):14297-305. PubMed ID: 7524675 [TBL] [Abstract][Full Text] [Related]
14. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. Evans J; Maccabee M; Hatahet Z; Courcelle J; Bockrath R; Ide H; Wallace S Mutat Res; 1993 May; 299(3-4):147-56. PubMed ID: 7683083 [TBL] [Abstract][Full Text] [Related]
15. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I. Zhuang P; Kolbanovskiy A; Amin S; Geacintov NE Biochemistry; 2001 Jun; 40(22):6660-9. PubMed ID: 11380261 [TBL] [Abstract][Full Text] [Related]
16. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
17. Effect of site-specifically located mitomycin C-DNA monoadducts on in vitro DNA synthesis by DNA polymerases. Basu AK; Hanrahan CJ; Malia SA; Kumar S; Bizanek R; Tomasz M Biochemistry; 1993 May; 32(18):4708-18. PubMed ID: 8490017 [TBL] [Abstract][Full Text] [Related]
18. Comparative efficiency of forming m4T.G versus m4T.A base pairs at a unique site by use of Escherichia coli DNA polymerase I (Klenow fragment) and Drosophila melanogaster polymerase alpha-primase complex. Dosanjh MK; Essigmann JM; Goodman MF; Singer B Biochemistry; 1990 May; 29(19):4698-703. PubMed ID: 2115381 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the fidelity of copying 5-methylcytosine and cytosine at a defined DNA template site. Shen JC; Creighton S; Jones PA; Goodman MF Nucleic Acids Res; 1992 Oct; 20(19):5119-25. PubMed ID: 1383939 [TBL] [Abstract][Full Text] [Related]
20. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions. Eckert KA; Opresko PL Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]