BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 27133484)

  • 1. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components.
    Dash S; Siddam AD; Barnum CE; Janga SC; Lachke SA
    Wiley Interdiscip Rev RNA; 2016 Jul; 7(4):527-57. PubMed ID: 27133484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency of the RNA binding protein caprin2 causes lens defects and features of Peters anomaly.
    Dash S; Dang CA; Beebe DC; Lachke SA
    Dev Dyn; 2015 Oct; 244(10):1313-27. PubMed ID: 26177727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency.
    Lachke SA
    Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems biology of lens development: A paradigm for disease gene discovery in the eye.
    Anand D; Lachke SA
    Exp Eye Res; 2017 Mar; 156():22-33. PubMed ID: 26992779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins.
    Mittal N; Scherrer T; Gerber AP; Janga SC
    J Mol Biol; 2011 Jun; 409(3):466-79. PubMed ID: 21501624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications.
    Nutter CA; Kuyumcu-Martinez MN
    Wiley Interdiscip Rev RNA; 2018 Mar; 9(2):. PubMed ID: 29280295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes.
    Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA
    Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurodegeneration and RNA-binding proteins.
    De Conti L; Baralle M; Buratti E
    Wiley Interdiscip Rev RNA; 2017 Mar; 8(2):. PubMed ID: 27659427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons.
    Olesnicky EC; Antonacci S; Popitsch N; Lybecker MC; Titus MB; Valadez R; Derkach PG; Marean A; Miller K; Mathai SK; Killian DJ
    Dev Biol; 2018 Dec; 444(2):116-128. PubMed ID: 30352216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs.
    Pullmann R; Kim HH; Abdelmohsen K; Lal A; Martindale JL; Yang X; Gorospe M
    Mol Cell Biol; 2007 Sep; 27(18):6265-78. PubMed ID: 17620417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-binding proteins: specificity and function.
    Zealy RW; Wrenn SP; Davila S; Min KW; Yoon JH
    Wiley Interdiscip Rev RNA; 2017 Sep; 8(5):. PubMed ID: 28130820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights Into the Role of RNA-Binding Proteins in the Regulation of Heart Development.
    Ladd AN
    Int Rev Cell Mol Biol; 2016; 324():125-85. PubMed ID: 27017008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyramine induces dynamic RNP granule remodeling and translation activation in the Drosophila brain.
    Formicola N; Heim M; Dufourt J; Lancelot AS; Nakamura A; Lagha M; Besse F
    Elife; 2021 Apr; 10():. PubMed ID: 33890854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins.
    Shi X; Hanson MR; Bentolila S
    Wiley Interdiscip Rev RNA; 2017 Sep; 8(5):. PubMed ID: 28371504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging functions of the Quaking RNA-binding proteins and link to human diseases.
    Darbelli L; Richard S
    Wiley Interdiscip Rev RNA; 2016 May; 7(3):399-412. PubMed ID: 26991871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the characterization of RNA-binding proteins.
    Marchese D; de Groot NS; Lorenzo Gotor N; Livi CM; Tartaglia GG
    Wiley Interdiscip Rev RNA; 2016 Nov; 7(6):793-810. PubMed ID: 27503141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertebrate eye development as modeled in Drosophila.
    Wawersik S; Maas RL
    Hum Mol Genet; 2000 Apr; 9(6):917-25. PubMed ID: 10767315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The double-stranded RNA-binding protein Staufen 2 regulates eye size.
    Cockburn DM; Charish J; Tassew NG; Eubanks J; Bremner R; Macchi P; Monnier PP
    Mol Cell Neurosci; 2012 Nov; 51(3-4):101-11. PubMed ID: 22940085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Roles of Disordered Sequences in RNA-Binding Proteins.
    Calabretta S; Richard S
    Trends Biochem Sci; 2015 Nov; 40(11):662-672. PubMed ID: 26481498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.