These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 27134163)
1. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi. Tycowski KT; Shu MD; Steitz JA Cell Rep; 2016 May; 15(6):1266-76. PubMed ID: 27134163 [TBL] [Abstract][Full Text] [Related]
2. Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Tycowski KT; Shu MD; Borah S; Shi M; Steitz JA Cell Rep; 2012 Jul; 2(1):26-32. PubMed ID: 22840393 [TBL] [Abstract][Full Text] [Related]
3. Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENβ noncoding RNAs. Brown JA; Valenstein ML; Yario TA; Tycowski KT; Steitz JA Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19202-7. PubMed ID: 23129630 [TBL] [Abstract][Full Text] [Related]
4. Intronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements. Brown JA; Steitz JA Methods Mol Biol; 2016; 1428():77-92. PubMed ID: 27236793 [TBL] [Abstract][Full Text] [Related]
5. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Mitton-Fry RM; DeGregorio SJ; Wang J; Steitz TA; Steitz JA Science; 2010 Nov; 330(6008):1244-7. PubMed ID: 21109672 [TBL] [Abstract][Full Text] [Related]
6. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432 [TBL] [Abstract][Full Text] [Related]
7. Structural analyses of an RNA stability element interacting with poly(A). Torabi SF; Chen YL; Zhang K; Wang J; DeGregorio SJ; Vaidya AT; Su Z; Pabit SA; Chiu W; Pollack L; Steitz JA Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33785601 [TBL] [Abstract][Full Text] [Related]
8. Dual coding of siRNAs and miRNAs by plant transposable elements. Piriyapongsa J; Jordan IK RNA; 2008 May; 14(5):814-21. PubMed ID: 18367716 [TBL] [Abstract][Full Text] [Related]
9. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Simpson GG; Filipowicz W Plant Mol Biol; 1996 Oct; 32(1-2):1-41. PubMed ID: 8980472 [TBL] [Abstract][Full Text] [Related]
10. Organellar Introns in Fungi, Algae, and Plants. Mukhopadhyay J; Hausner G Cells; 2021 Aug; 10(8):. PubMed ID: 34440770 [TBL] [Abstract][Full Text] [Related]
11. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Xu M; Brar HK; Grosic S; Palmer RG; Bhattacharyya MK Genetics; 2010 Jan; 184(1):53-63. PubMed ID: 19897750 [TBL] [Abstract][Full Text] [Related]
12. Transposable element influences on gene expression in plants. Hirsch CD; Springer NM Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):157-165. PubMed ID: 27235540 [TBL] [Abstract][Full Text] [Related]
13. Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. Dujon B Gene; 1989 Oct; 82(1):91-114. PubMed ID: 2555264 [TBL] [Abstract][Full Text] [Related]
14. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Wang D; Qu Z; Yang L; Zhang Q; Liu ZH; Do T; Adelson DL; Wang ZY; Searle I; Zhu JK Plant J; 2017 Apr; 90(1):133-146. PubMed ID: 28106309 [TBL] [Abstract][Full Text] [Related]
15. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Mekouar M; Blanc-Lenfle I; Ozanne C; Da Silva C; Cruaud C; Wincker P; Gaillardin C; Neuvéglise C Genome Biol; 2010; 11(6):R65. PubMed ID: 20573210 [TBL] [Abstract][Full Text] [Related]
17. Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. Liu B; Iwata-Otsubo A; Yang D; Baker RL; Liang C; Jackson SA; Liu S; Ma J; Zhao M Plant J; 2021 Jan; 105(1):34-48. PubMed ID: 33098166 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Brown JA; Bulkley D; Wang J; Valenstein ML; Yario TA; Steitz TA; Steitz JA Nat Struct Mol Biol; 2014 Jul; 21(7):633-40. PubMed ID: 24952594 [TBL] [Abstract][Full Text] [Related]
19. Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Hou J; Lu D; Mason AS; Li B; Xiao M; An S; Fu D Planta; 2019 Jul; 250(1):23-40. PubMed ID: 30993403 [TBL] [Abstract][Full Text] [Related]
20. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. Xia L; Watkins NJ; Maxwell ES RNA; 1997 Jan; 3(1):17-26. PubMed ID: 8990395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]