These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2713439)

  • 1. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.
    Atkinson GH; Blanchard D; Lemaire H; Brack TL; Hayashi H
    Biophys J; 1989 Feb; 55(2):263-74. PubMed ID: 2713439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.
    Brack TL; Delaney JK; Atkinson GH; Albeck A; Sheves M; Ottolenghi M
    Biophys J; 1993 Aug; 65(2):964-72. PubMed ID: 8218919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment.
    Delaney JK; Brack TL; Atkinson GH; Ottolenghi M; Steinberg G; Sheves M
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2101-5. PubMed ID: 7892231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picosecond kinetics of the fluorescence from the chromophore of the purple membrane protein of Halobacterium halobium.
    Alfano RR; Govindjee R; Becher B; Ebrey TG
    Biophys J; 1976 May; 16(5):541-5. PubMed ID: 1276383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved absorption and fluorescence from the bacteriorhodopsin photocycle in the nanosecond time regime.
    Delaney JK; Brack TL; Atkinson GH
    Biophys J; 1993 May; 64(5):1512-9. PubMed ID: 19431895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions.
    Groma GI; Helgerson SL; Wolber PK; Beece D; Dancsházy Z; Keszthelyi L; Stoeckenius W
    Biophys J; 1984 May; 45(5):985-92. PubMed ID: 6329348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-like intermediate in the photocycle of the acid purple form of bacteriorhodopsin.
    Tokaji Z; Dér A; Keszthelyi L
    FEBS Lett; 1997 Mar; 405(1):125-7. PubMed ID: 9094439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy storage in the primary step of the photocycle of bacteriorhodopsin.
    Birge RR; Cooper TM
    Biophys J; 1983 Apr; 42(1):61-9. PubMed ID: 6838982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A time-resolved spectral study of the K and KL intermediates of bacteriorhodopsin.
    Milder SJ; Kliger DS
    Biophys J; 1988 Mar; 53(3):465-8. PubMed ID: 3349137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms.
    van den Berg R; Jang DJ; el-Sayed MA
    Biophys J; 1990 Apr; 57(4):759-64. PubMed ID: 2344462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the primary quantum yields in the bacteriorhodopsin photocycle.
    Goldschmidt CR; Ottolenghi M; Korenstein R
    Biophys J; 1976 Jul; 16(7):839-43. PubMed ID: 938722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [FLuorescence of photoactive bacteriorhodopsin].
    Sineshchekov VA; Balashov SP; Litvin FF
    Biofizika; 1981; 26(6):964-72. PubMed ID: 7317504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states.
    Wang J; Link S; Heyes CD; El-Sayed MA
    Biophys J; 2002 Sep; 83(3):1557-66. PubMed ID: 12202380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of bacteriorhodopsin.
    Kouyama T; Kinosita K; Ikegami A
    Adv Biophys; 1988; 24():123-75. PubMed ID: 3077237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy.
    Schmidt B; Sobotta C; Heinz B; Laimgruber S; Braun M; Gilch P
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):165-73. PubMed ID: 15620377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements.
    Kriebel AN; Gillbro T; Wild UP
    Biochim Biophys Acta; 1979 Apr; 546(1):106-20. PubMed ID: 444490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function.
    Kim TY; Winkler K; Alexiev U
    Photochem Photobiol; 2007; 83(2):378-84. PubMed ID: 17117889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of primary events in the photocycle of excited bacteriorhodopsin.
    Lu JJ; Ming M; Yang Y; Wu J; Li B; Ding JD; Li QG; Qian SX
    Acta Biochim Biophys Sin (Shanghai); 2004 Nov; 36(11):724-8. PubMed ID: 15514845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.