BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2713449)

  • 1. Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes.
    Alcayaga C; Cecchi X; Alvarez O; Latorre R
    Biophys J; 1989 Feb; 55(2):367-71. PubMed ID: 2713449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a calcium-activated potassium channel from rabbit intestinal smooth muscle incorporated into planar bilayers.
    Cecchi X; Alvarez O; Wolff D
    J Membr Biol; 1986; 91(1):11-8. PubMed ID: 2426453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton modulation of a Ca(2+)-activated K+ channel from rat skeletal muscle incorporated into planar bilayers.
    Laurido C; Candia S; Wolff D; Latorre R
    J Gen Physiol; 1991 Nov; 98(5):1025-42. PubMed ID: 1662682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethanol on tracheal potassium channels reconstituted into bilayer lipid membranes.
    Kominková V; Magova M; Mojzisová A; Maleková E; Ondrias K
    Physiol Res; 2001; 50(5):507-11. PubMed ID: 11702855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-activated K+ channels from an insulin-secreting cell line incorporated into planar lipid bilayers.
    Oosawa Y; Ashcroft SJ; Ashcroft FM
    Diabetologia; 1992 Jul; 35(7):619-23. PubMed ID: 1379561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ruthenium red on membrane ionic currents in urinary bladder smooth muscle cells of the guinea-pig.
    Hirano M; Imaizumi Y; Muraki K; Yamada A; Watanabe M
    Pflugers Arch; 1998 Apr; 435(5):645-53. PubMed ID: 9479017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PKG-I alpha phosphorylates the alpha-subunit and upregulates reconstituted GKCa channels from tracheal smooth muscle.
    Alioua A; Huggins JP; Rousseau E
    Am J Physiol; 1995 Jun; 268(6 Pt 1):L1057-63. PubMed ID: 7611428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ characterization of the Ca2+ sensitivity of large conductance Ca2+-activated K+ channels: implications for their use as near-membrane Ca2+ indicators in smooth muscle cells.
    Muñoz A; García L; Guerrero-Hernández A
    Biophys J; 1998 Oct; 75(4):1774-82. PubMed ID: 9746519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum.
    Miller C
    Biophys J; 1982 Jun; 38(3):227-30. PubMed ID: 6285998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
    Tripathy A; Meissner G
    Biophys J; 1996 Jun; 70(6):2600-15. PubMed ID: 8744299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.
    Chen W; Lee RC
    Biophys J; 1994 Aug; 67(2):603-12. PubMed ID: 7948676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the general anesthetic halothane on the activity of the transverse tubule Ca(2+)-activated K+ channel.
    Beeler T; Gable K
    FEBS Lett; 1993 Oct; 331(3):207-10. PubMed ID: 8375507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers.
    Chu B; Dopico AM; Lemos JR; Treistman SN
    Mol Pharmacol; 1998 Aug; 54(2):397-406. PubMed ID: 9687582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxant effects of NKH477, a new water-soluble forskolin derivative, on guinea-pig tracheal smooth muscle: the role of Ca2+-activated K+ channels.
    Satake K; Takagi K; Kodama I; Honjo H; Toyama J; Shibata S
    Br J Pharmacol; 1998 Feb; 123(4):753-61. PubMed ID: 9517396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle.
    Cecchi X; Wolff D; Alvarez O; Latorre R
    Biophys J; 1987 Nov; 52(5):707-16. PubMed ID: 2447963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subconductance behavior in a maxi Ca2(+)-activated K+ channel induced by dendrotoxin-I.
    Lucchesi K; Moczydlowski E
    Neuron; 1990 Jan; 4(1):141-8. PubMed ID: 2310572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel.
    Schumaker MF
    Biophys J; 1992 Oct; 63(4):1032-44. PubMed ID: 1420923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing of pore in the Chara gymnophylla K+ channel by blocking cations and by streaming potential measurements.
    Pottosin II
    FEBS Lett; 1992 Feb; 298(2-3):253-6. PubMed ID: 1544457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ion channels from Acetabularia plasma membrane in planar lipid bilayers.
    White PJ; Smahel M; Thiel G
    J Membr Biol; 1993 Apr; 133(2):145-60. PubMed ID: 8515431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.