These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27134817)

  • 1. Oxidative stress, epigenetics, and cancer stem cells in arsenic carcinogenesis and prevention.
    Li L; Chen F
    Curr Pharmacol Rep; 2016 Apr; 2(2):57-63. PubMed ID: 27134817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic and cancer: Evidence and mechanisms.
    Speer RM; Zhou X; Volk LB; Liu KJ; Hudson LG
    Adv Pharmacol; 2023; 96():151-202. PubMed ID: 36858772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis.
    Eckstein M; Eleazer R; Rea M; Fondufe-Mittendorf Y
    Rev Environ Health; 2017 Mar; 32(1-2):93-103. PubMed ID: 27701139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes.
    Ding W; Hudson LG; Liu KJ
    Mol Cell Biochem; 2005 Nov; 279(1-2):105-12. PubMed ID: 16283519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis.
    Humphries B; Wang Z; Yang C
    Food Chem Toxicol; 2016 Dec; 98(Pt A):58-65. PubMed ID: 26903202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal carcinogen exposure induces cancer stem cell-like property through epigenetic reprograming: A novel mechanism of metal carcinogenesis.
    Wang Z; Yang C
    Semin Cancer Biol; 2019 Aug; 57():95-104. PubMed ID: 30641125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic-Induced Carcinogenesis: The Impact of miRNA Dysregulation.
    Cardoso APF; Al-Eryani L; States JC
    Toxicol Sci; 2018 Oct; 165(2):284-290. PubMed ID: 29846715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma.
    Choiniere J; Wang L
    Acta Pharm Sin B; 2016 Sep; 6(5):426-429. PubMed ID: 27709011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells.
    Zhang Z; Pratheeshkumar P; Budhraja A; Son YO; Kim D; Shi X
    Biochem Biophys Res Commun; 2015 Jan; 456(2):643-8. PubMed ID: 25499816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress as a possible mode of action for arsenic carcinogenesis.
    Kitchin KT; Ahmad S
    Toxicol Lett; 2003 Jan; 137(1-2):3-13. PubMed ID: 12505428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration.
    Ngalame NN; Makia NL; Waalkes MP; Tokar EJ
    Toxicol Appl Pharmacol; 2016 Dec; 312():11-18. PubMed ID: 26721309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis.
    Kawata K; Shimazaki R; Okabe S
    Environ Mol Mutagen; 2009 Jan; 50(1):46-59. PubMed ID: 19031421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupational and environmental exposures and cancers in developing countries.
    Hashim D; Boffetta P
    Ann Glob Health; 2014; 80(5):393-411. PubMed ID: 25512155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage
    Rao CV; Pal S; Mohammed A; Farooqui M; Doescher MP; Asch AS; Yamada HY
    Oncotarget; 2017 Aug; 8(34):57605-57621. PubMed ID: 28915699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic exposure triggers a shift in microRNA expression.
    Sturchio E; Colombo T; Boccia P; Carucci N; Meconi C; Minoia C; Macino G
    Sci Total Environ; 2014 Feb; 472():672-80. PubMed ID: 24317173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentially Expressed mRNA Targets of Differentially Expressed miRNAs Predict Changes in the TP53 Axis and Carcinogenesis-Related Pathways in Human Keratinocytes Chronically Exposed to Arsenic.
    Al-Eryani L; Waigel S; Tyagi A; Peremarti J; Jenkins SF; Damodaran C; States JC
    Toxicol Sci; 2018 Apr; 162(2):645-654. PubMed ID: 29319823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics, metabolism, and carcinogenicity of arsenic.
    Pott WA; Benjamin SA; Yang RS
    Rev Environ Contam Toxicol; 2001; 169():165-214. PubMed ID: 11330077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes.
    Zhou Q; Xi S
    Regul Toxicol Pharmacol; 2018 Nov; 99():78-88. PubMed ID: 30223072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.