These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 27135189)
21. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process. Wang X; Pan Y; Zhu Z; Wu J Chemosphere; 2014 Dec; 117():638-43. PubMed ID: 25461929 [TBL] [Abstract][Full Text] [Related]
22. Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process. Bansode AS; More SE; Siddiqui EA; Satpute S; Ahmad A; Bhoraskar SV; Mathe VL Chemosphere; 2017 Jan; 167():396-405. PubMed ID: 27744197 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and visible light photocatalytic properties of polyoxometalate-thionine composite films immobilized on porous TiO2 microspheres. Yang Z; Gao S; Li H; Cao R J Colloid Interface Sci; 2012 Jun; 375(1):172-9. PubMed ID: 22425252 [TBL] [Abstract][Full Text] [Related]
24. [Photo-fenton oxidation processes used in the degradation of rhodamine B]. Zheng HL; Xiang XY Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jun; 24(6):726-9. PubMed ID: 15766194 [TBL] [Abstract][Full Text] [Related]
25. Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies. Maria Magdalane C; Kaviyarasu K; Judith Vijaya J; Siddhardha B; Jeyaraj B J Photochem Photobiol B; 2017 Aug; 173():23-34. PubMed ID: 28554073 [TBL] [Abstract][Full Text] [Related]
26. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase. Merouani S; Hamdaoui O; Saoudi F; Chiha M; Pétrier C J Hazard Mater; 2010 Mar; 175(1-3):593-9. PubMed ID: 19910116 [TBL] [Abstract][Full Text] [Related]
27. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2. Hou MF; Liao L; Zhang WD; Tang XY; Wan HF; Yin GC Chemosphere; 2011 May; 83(9):1279-83. PubMed ID: 21459408 [TBL] [Abstract][Full Text] [Related]
28. Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L. Mishra KP; Gogate PR J Environ Manage; 2011 Aug; 92(8):1972-7. PubMed ID: 21530069 [TBL] [Abstract][Full Text] [Related]
29. Ferrocene-functionalized graphitic carbon nitride as an enhanced heterogeneous catalyst of Fenton reaction for degradation of Rhodamine B under visible light irradiation. Lin KA; Lin JT Chemosphere; 2017 Sep; 182():54-64. PubMed ID: 28494361 [TBL] [Abstract][Full Text] [Related]
30. An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation. Li G; Jiang B; Xiao S; Lian Z; Zhang D; Yu JC; Li H Environ Sci Process Impacts; 2014 Aug; 16(8):1975-80. PubMed ID: 24934740 [TBL] [Abstract][Full Text] [Related]
31. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media. Zhang N; Li G; Cheng Z; Zuo X J Hazard Mater; 2012 Aug; 229-230():404-10. PubMed ID: 22771346 [TBL] [Abstract][Full Text] [Related]
32. An investigation into the effect of porosities on the adsorption of rhodamine B using titania-silica mixed oxide xerogels. Rasalingam S; Peng R; Koodali RT J Environ Manage; 2013 Oct; 128():530-9. PubMed ID: 23831675 [TBL] [Abstract][Full Text] [Related]
33. Sulfur vacancy-rich (α/β-CdS)/SiO Wang W; Qin X; Wang X; Ma K; Wu Z; Si H; Zhang J Environ Pollut; 2024 Mar; 345():123428. PubMed ID: 38286260 [TBL] [Abstract][Full Text] [Related]
34. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Kansal SK; Singh M; Sud D J Hazard Mater; 2007 Mar; 141(3):581-90. PubMed ID: 16919871 [TBL] [Abstract][Full Text] [Related]
35. Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. Asiltürk M; Sayilkan F; Erdemoğlu S; Akarsu M; Sayilkan H; Erdemoğlu M; Arpaç E J Hazard Mater; 2006 Feb; 129(1-3):164-70. PubMed ID: 16188382 [TBL] [Abstract][Full Text] [Related]
36. Amine-rich quartz nanoparticles for Cu(II) chelation and their application as an efficient catalyst for oxidative degradation of Rhodamine B dye. Gemeay AH; El-Halwagy ME; Elsherbiny AS; Zaki AB Environ Sci Pollut Res Int; 2021 Jun; 28(22):28289-28306. PubMed ID: 33534102 [TBL] [Abstract][Full Text] [Related]
37. A novel WO Li T; Song L; Zhang S Environ Sci Pollut Res Int; 2018 Mar; 25(8):7937-7945. PubMed ID: 29299868 [TBL] [Abstract][Full Text] [Related]
38. Photodegradation of dye pollutants catalyzed by porous K3PW12O40 under visible irradiation. Chen C; Wang Q; Lei P; Song W; Ma W; Zhao J Environ Sci Technol; 2006 Jun; 40(12):3965-70. PubMed ID: 16830569 [TBL] [Abstract][Full Text] [Related]
39. Mesoporous silica nanospheres decorated with CdS nanocrystals for enhanced photocatalytic and excellent antibacterial activities. Hu JL; Yang QH; Lin H; Ye YP; He Q; Zhang JN; Qian HS Nanoscale; 2013 Jul; 5(14):6327-32. PubMed ID: 23760602 [TBL] [Abstract][Full Text] [Related]
40. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes. Shabat-Hadas E; Mamane H; Gitis V Chemosphere; 2017 Oct; 184():1020-1027. PubMed ID: 28658737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]