BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27135569)

  • 1. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions.
    Xiao Y; Peijnenburg WJ; Chen G; Vijver MG
    Sci Total Environ; 2016 Sep; 563-564():81-8. PubMed ID: 27135569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.
    Xiao Y; Peijnenburg WJGM; Chen G; Vijver MG
    Sci Total Environ; 2018 Jan; 610-611():1329-1335. PubMed ID: 28851153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna.
    Xiao Y; Vijver MG; Chen G; Peijnenburg WJ
    Environ Sci Technol; 2015 Apr; 49(7):4657-64. PubMed ID: 25785366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles.
    Mwaanga P; Carraway ER; van den Hurk P
    Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna.
    Yu Q; Wang Z; Wang G; Peijnenburg WJGM; Vijver MG
    Environ Pollut; 2022 Jan; 292(Pt B):118413. PubMed ID: 34751154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna.
    De Schamphelaere KA; Janssen CR
    Environ Toxicol Chem; 2004 May; 23(5):1115-22. PubMed ID: 15180361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna.
    Adam N; Vakurov A; Knapen D; Blust R
    J Hazard Mater; 2015; 283():416-22. PubMed ID: 25464278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna.
    Kramer KJ; Jak RG; van Hattum B; Hooftman RN; Zwolsman JJ
    Environ Toxicol Chem; 2004 Dec; 23(12):2971-80. PubMed ID: 15648773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles.
    Adam N; Vergauwen L; Blust R; Knapen D
    Environ Res; 2015 Apr; 138():82-92. PubMed ID: 25704829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-Dependent Toxicity Responses in Daphnia magna Exposed to CuO and ZnO Nanoparticles.
    Kim S; Samanta P; Yoo J; Kim WK; Jung J
    Bull Environ Contam Toxicol; 2017 Apr; 98(4):502-507. PubMed ID: 28078368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of physiochemical properties of test media on nanoparticle toxicity to Daphnia magna Straus.
    Seo J; Kim S; Choi S; Kwon D; Yoon TH; Kim WK; Park JW; Jung J
    Bull Environ Contam Toxicol; 2014 Sep; 93(3):257-62. PubMed ID: 25063370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of water chemistry on the behavior and fate of copper nanoparticles.
    Xiao Y; Vijver MG; Peijnenburg WJGM
    Environ Pollut; 2018 Mar; 234():684-691. PubMed ID: 29227954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing toxicity of copper nanoparticles across five cladoceran species.
    Song L; Vijver MG; de Snoo GR; Peijnenburg WJ
    Environ Toxicol Chem; 2015 Aug; 34(8):1863-9. PubMed ID: 25826796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: Complex roles of pH, dissolved organic carbon and divalent cations.
    Zhang F; Wang Z; Wang S; Fang H; Wang D
    Chemosphere; 2019 Aug; 228():195-203. PubMed ID: 31029965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna.
    Jo HJ; Son J; Cho K; Jung J
    Chemosphere; 2010 Nov; 81(10):1301-7. PubMed ID: 20875667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration.
    Newton KM; Puppala HL; Kitchens CL; Colvin VL; Klaine SJ
    Environ Toxicol Chem; 2013 Oct; 32(10):2356-64. PubMed ID: 23761010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles.
    Sørensen SN; Holten Lützhøft HC; Rasmussen R; Baun A
    Aquat Toxicol; 2016 Nov; 180():209-217. PubMed ID: 27736693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.
    Jo HJ; Choi JW; Lee SH; Hong SW
    J Hazard Mater; 2012 Aug; 227-228():301-8. PubMed ID: 22682800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.