These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27135572)

  • 1. Environmental impact of ongoing sources of metal contamination on remediated sediments.
    Knox AS; Paller MH; Milliken CE; Redder TM; Wolfe JR; Seaman J
    Sci Total Environ; 2016 Sep; 563-564():108-17. PubMed ID: 27135572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of low levels of Cu from ongoing sources in the presence of other elements - Implications for remediated contaminated sediments.
    Knox AS; Paller MH; Seaman JC
    Sci Total Environ; 2019 Jun; 668():645-657. PubMed ID: 30856573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bioturbation on contaminated sediment deposited over remediated sediment.
    Knox AS; Paller MH
    Sci Total Environ; 2020 Apr; 713():136537. PubMed ID: 31955083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid assessments of metal bioavailability in marine sediments using coelomic fluid of sipunculan worms.
    Tan QG; Ke C; Wang WX
    Environ Sci Technol; 2013 Jul; 47(13):7499-505. PubMed ID: 23746306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony.
    Sun Q; Ding S; Chen M; Gao S; Lu G; Wu Y; Gong M; Wang D; Wang Y
    Environ Pollut; 2019 Feb; 245():725-734. PubMed ID: 30500752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amendments for the in situ remediation of contaminated sediments: evaluation of potential environmental impacts.
    Paller MH; Knox AS
    Sci Total Environ; 2010 Sep; 408(20):4894-900. PubMed ID: 20655093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of sorbent amendments for in situ remediation of metal-contaminated sediments.
    Kwon S; Thomas J; Reed BE; Levine L; Magar VS; Farrar D; Bridges TS; Ghosh U
    Environ Toxicol Chem; 2010 Sep; 29(9):1883-92. PubMed ID: 20821645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments.
    Zhang C; Shan B; Zhu Y; Tang W
    Environ Pollut; 2018 Nov; 242(Pt B):1768-1776. PubMed ID: 30072221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resuspension of sediment, a new approach for remediation of contaminated sediment.
    Pourabadehei M; Mulligan CN
    Environ Pollut; 2016 Jun; 213():63-75. PubMed ID: 26874876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of remediation on sediment toxicity within the Grand Calumet River, Indiana, USA.
    Steevens JA; Besser JM; Dorman RA; Sparks DW
    Chemosphere; 2020 Jun; 249():126056. PubMed ID: 32062218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.
    Malvandi H
    Mar Pollut Bull; 2017 Apr; 117(1-2):547-553. PubMed ID: 28236442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large-scale field trial of thin-layer capping of PCDD/F-contaminated sediments: Sediment-to-water fluxes up to 5 years post-amendment.
    Cornelissen G; Schaanning M; Gunnarsson JS; Eek E
    Integr Environ Assess Manag; 2016 Apr; 12(2):216-21. PubMed ID: 26012529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling.
    Lampert DJ; Sarchet WV; Reible DD
    Environ Sci Technol; 2011 Oct; 45(19):8437-43. PubMed ID: 21846112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Biota Accumulation Due to Contamination of Sediments by Storm Water Heavy Metals.
    Drygiannaki I; Bejar M; Reible DD; Dawson JA; Rao B; Hayman NT; Rosen GH; Colvin MA
    Environ Toxicol Chem; 2020 Dec; 39(12):2475-2484. PubMed ID: 32845535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and geographic trends in trace element concentrations in moose from Yukon, Canada.
    Gamberg M; Palmer M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():530-8. PubMed ID: 16143369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination.
    Melville F; Pulkownik A
    Sci Total Environ; 2007 Nov; 387(1-3):301-9. PubMed ID: 17662374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAH concentration gradients and fluxes through sand cap test cells installed in situ over river sediments containing coal tar.
    Kim YS; Nyberg LM; Jenkinson B; Jafvert CT
    Environ Sci Process Impacts; 2013 Aug; 15(8):1601-12. PubMed ID: 23817437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: first results of an experimental study.
    Roulier JL; Tusseau-Vuillemin MH; Coquery M; Geffard O; Garric J
    Chemosphere; 2008 Jan; 70(5):925-32. PubMed ID: 17888490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of contaminated marine sediment using thin-layer capping with activated carbon--a field experiment in Trondheim harbor, Norway.
    Cornelissen G; Kruså ME; Breedveld GD; Eek E; Oen AM; Arp HP; Raymond C; Samuelsson G; Hedman JE; Stokland Ø; Gunnarsson JS
    Environ Sci Technol; 2011 Jul; 45(14):6110-6. PubMed ID: 21671651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.