BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27136042)

  • 41. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.
    Saa L; Grinyte R; Sánchez-Iglesias A; Liz-Marzán LM; Pavlov V
    ACS Appl Mater Interfaces; 2016 May; 8(17):11139-46. PubMed ID: 27070402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions of human acetylcholinesterase with phenyl valerate and acetylthiocholine: Thiocholine as an enhancer of phenyl valerate esterase activity.
    Estévez J; Terol M; Sogorb MÁ; Vilanova E
    Chem Biol Interact; 2022 Jan; 351():109764. PubMed ID: 34875277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-particle enumeration-based ultrasensitive enzyme activity quantification with fluorescent polymer nanoparticles.
    Han Y; Ye Z; Wang F; Chen T; Wei L; Chen L; Xiao L
    Nanoscale; 2019 Aug; 11(31):14793-14801. PubMed ID: 31353389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.
    Zhai C; Guo Y; Sun X; Zheng Y; Wang X
    Enzyme Microb Technol; 2014 May; 58-59():8-13. PubMed ID: 24731819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.
    Sohn IY; Kim DJ; Jung JH; Yoon OJ; Thanh TN; Quang TT; Lee NE
    Biosens Bioelectron; 2013 Jul; 45():70-6. PubMed ID: 23454740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing.
    Li Y; Chen L; Li CY; Zhang J; Zhao Y; Yang YH; Yang T
    Biosens Bioelectron; 2024 Mar; 247():115912. PubMed ID: 38096721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidase-mimicking activity of ultrathin MnO
    Yan X; Song Y; Wu X; Zhu C; Su X; Du D; Lin Y
    Nanoscale; 2017 Feb; 9(6):2317-2323. PubMed ID: 28134376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide.
    Kandimalla VB; Ju H
    Chemistry; 2006 Jan; 12(4):1074-80. PubMed ID: 16240314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors.
    Yu G; Wu W; Zhao Q; Wei X; Lu Q
    Biosens Bioelectron; 2015 Jun; 68():288-294. PubMed ID: 25594160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly sensitive GQDs-MnO
    Deng J; Lu D; Zhang X; Shi G; Zhou T
    Environ Pollut; 2017 May; 224():436-444. PubMed ID: 28258856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor.
    Vamvakaki V; Fournier D; Chaniotakis NA
    Biosens Bioelectron; 2005 Aug; 21(2):384-8. PubMed ID: 16023967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High throughput enzyme inhibitor screening by functionalized magnetic carbonaceous microspheres and graphene oxide-based MALDI-TOF-MS.
    Liu Y; Li Y; Liu J; Deng C; Zhang X
    J Am Soc Mass Spectrom; 2011 Dec; 22(12):2188-98. PubMed ID: 21952774
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors.
    Hai A; Ben-Haim D; Korbakov N; Cohen A; Shappir J; Oren R; Spira ME; Yitzchaik S
    Biosens Bioelectron; 2006 Dec; 22(5):605-12. PubMed ID: 16529923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphitic-phase C
    Liu B; Chen J; Peng Y; Xiao W; Peng Z; Qiu P
    J Environ Sci Health B; 2022; 57(6):441-449. PubMed ID: 35414329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Screening of acetylcholinesterase inhibitors by CE after enzymatic reaction at capillary inlet.
    Martín-Biosca Y; Asensi-Bernardi L; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ
    J Sep Sci; 2009 May; 32(10):1748-56. PubMed ID: 19472276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An electrochemical platform for acetylcholinesterase activity assay and inhibitors screening based on Michael addition reaction between thiocholine and catechol-terminated SAMs.
    Tian Y; Ye S; Shi X; Jing L; Liang C; Xian Y
    Analyst; 2011 Dec; 136(23):5084-90. PubMed ID: 21994917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos.
    Di Tuoro D; Portaccio M; Lepore M; Arduini F; Moscone D; Bencivenga U; Mita DG
    N Biotechnol; 2011 Dec; 29(1):132-8. PubMed ID: 21600321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer's disease therapy.
    Piazzi L; Rampa A; Bisi A; Gobbi S; Belluti F; Cavalli A; Bartolini M; Andrisano V; Valenti P; Recanatini M
    J Med Chem; 2003 Jun; 46(12):2279-82. PubMed ID: 12773032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.