These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27136083)
41. Comparison of optic nerve head topography and retinal nerve fiber layer in eyes with narrow angles versus eyes from a normal open angle cohort - a pilot study. Chen YC; Huang G; Kasuga T; Porco T; Hung PT; Lee R; Lin SC Curr Eye Res; 2012 Jul; 37(7):592-8. PubMed ID: 22559281 [TBL] [Abstract][Full Text] [Related]
42. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans. Alhadeff PA; De Moraes CG; Chen M; Raza AS; Ritch R; Hood DC J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890 [TBL] [Abstract][Full Text] [Related]
43. Factors affecting the sensitivity and specificity of the Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs. Saarela V; Falck A; Airaksinen PJ; Tuulonen A Acta Ophthalmol; 2012 Mar; 90(2):132-8. PubMed ID: 20346079 [TBL] [Abstract][Full Text] [Related]
44. Optical coherence tomography in paediatric glaucoma: time domain versus spectral domain. Ghasia FF; Freedman SF; Rajani A; Holgado S; Asrani S; El-Dairi M Br J Ophthalmol; 2013 Jul; 97(7):837-42. PubMed ID: 23620420 [TBL] [Abstract][Full Text] [Related]
45. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. Sung KR; Na JH; Lee Y J Glaucoma; 2012 Sep; 21(7):498-504. PubMed ID: 21637115 [TBL] [Abstract][Full Text] [Related]
46. Effects of acutely lowering intraocular pressure on the results of multifocal visual evoked potential testing. Jindal AP; Fleischman D; Leiby B; Spaeth GL; Myers JS; Katz LJ Acta Ophthalmol; 2011 Nov; 89(7):e550-4. PubMed ID: 21599873 [TBL] [Abstract][Full Text] [Related]
47. Quantitative analysis of localized retinal nerve fiber layer defects using spectral domain optical coherence tomography. Shin JW; Uhm KB; Seo S J Glaucoma; 2015; 24(5):335-43. PubMed ID: 23970341 [TBL] [Abstract][Full Text] [Related]
48. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. DeLeón Ortega JE; Sakata LM; Kakati B; McGwin G; Monheit BE; Arthur SN; Girkin CA Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1156-63. PubMed ID: 17325159 [TBL] [Abstract][Full Text] [Related]
49. [Optic Disc Drusen and their Complications]. Štrofová H; Jarošová A Cesk Slov Oftalmol; 2016 Feb; 72(1):298-308. PubMed ID: 27041286 [TBL] [Abstract][Full Text] [Related]
50. Assessment of optic disk by disk damage likelihood scale staging using slit-lamp biomicroscopy and optical coherence tomography in diagnosing primary open-angle glaucoma. Singh K; Bhushan P; Mishra D; Kaur K; Gurnani B; Singh A; Pandey S Indian J Ophthalmol; 2022 Dec; 70(12):4152-4157. PubMed ID: 36453304 [TBL] [Abstract][Full Text] [Related]
51. Relationship between Humphrey 30-2 SITA Standard Test, Matrix 30-2 threshold test, and Heidelberg retina tomograph in ocular hypertensive and glaucoma patients. Bozkurt B; Yilmaz PT; Irkec M J Glaucoma; 2008; 17(3):203-10. PubMed ID: 18414106 [TBL] [Abstract][Full Text] [Related]
52. Optic disc tilt direction determines the location of initial glaucomatous damage. Choi JA; Park HY; Shin HY; Park CK Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):4991-8. PubMed ID: 24985480 [TBL] [Abstract][Full Text] [Related]
53. Secondary glaucoma in uveitis: comparison of the optic nerve head morphology among a nonmydriatic fundus camera, HRT, and SD-OCT. Pahlitzsch M; Klamann MKJ; Jacob S; Erb C; Winterhalter S; Torun N; Maier AB; Bertelmann E Eur J Ophthalmol; 2018 May; 28(3):299-305. PubMed ID: 29148032 [TBL] [Abstract][Full Text] [Related]
54. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
55. Sector-based analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Oddone F; Centofanti M; Iester M; Rossetti L; Fogagnolo P; Michelessi M; Capris E; Manni G Ophthalmology; 2009 Jun; 116(6):1106-11.e1-3. PubMed ID: 19376590 [TBL] [Abstract][Full Text] [Related]
56. Can Visual Field Progression be Predicted by Confocal Scanning Laser Ophthalmoscopic Imaging of the Optic Nerve Head in Glaucoma? (An American Ophthalmological Society Thesis). Danias J; Serle J Trans Am Ophthalmol Soc; 2015; 113():T4. PubMed ID: 26549913 [TBL] [Abstract][Full Text] [Related]
57. Difference in correspondence between visual field defect and inner macular layer thickness measured using three types of spectral-domain OCT instruments. Ueda K; Kanamori A; Akashi A; Kawaka Y; Yamada Y; Nakamura M Jpn J Ophthalmol; 2015 Jan; 59(1):55-64. PubMed ID: 25377494 [TBL] [Abstract][Full Text] [Related]
58. Optic disk and nerve fiber layer imaging to detect glaucoma. Badalà F; Nouri-Mahdavi K; Raoof DA; Leeprechanon N; Law SK; Caprioli J Am J Ophthalmol; 2007 Nov; 144(5):724-32. PubMed ID: 17868631 [TBL] [Abstract][Full Text] [Related]
59. Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes. Mistlberger A; Liebmann JM; Greenfield DS; Pons ME; Hoh ST; Ishikawa H; Ritch R Ophthalmology; 1999 Oct; 106(10):2027-32. PubMed ID: 10519603 [TBL] [Abstract][Full Text] [Related]
60. Three dimensional neuro-retinal rim thickness and retinal nerve fiber layer thickness using high-definition optical coherence tomography for open-angle glaucoma. Subramaniam S; Jeoung JW; Lee WJ; Kim YK; Park KH Jpn J Ophthalmol; 2018 Nov; 62(6):634-642. PubMed ID: 30229404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]