These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27136154)

  • 1. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.
    Cerco CF
    J Environ Qual; 2016 May; 45(3):882-6. PubMed ID: 27136154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Reservoir Sediment Scour on Water Quality in a Downstream Estuary.
    Cerco CF; Noel MR
    J Environ Qual; 2016 May; 45(3):894-905. PubMed ID: 27136156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Reservoir Infill on Coastal Deep Water Hypoxia.
    Linker LC; Batiuk RA; Cerco CF; Shenk GW; Tian R; Wang P; Yactayo G
    J Environ Qual; 2016 May; 45(3):887-93. PubMed ID: 27136155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.
    Zhang Q; Hirsch RM; Ball WP
    Environ Sci Technol; 2016 Feb; 50(4):1877-86. PubMed ID: 26744776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non-tidal Susquehanna River Basin to Chesapeake Bay.
    Zhang Q; Brady DC; Ball WP
    Sci Total Environ; 2013 May; 452-453():208-21. PubMed ID: 23506853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay.
    Joshi SR; Kukkadapu RK; Burdige DJ; Bowden ME; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 May; 49(10):5887-96. PubMed ID: 25633477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns.
    Zhang Q; Ball WP; Moyer DL
    Sci Total Environ; 2016 Sep; 563-564():1016-29. PubMed ID: 27185349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management.
    Murphy RR; Keisman J; Harcum J; Karrh RR; Lane M; Perry ES; Zhang Q
    Environ Sci Technol; 2022 Jan; 56(1):260-270. PubMed ID: 34931816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological condition of US Mid-Atlantic estuaries, 1997-1998.
    Kiddon JA; Paul JF; Buffum HW; Strobel CS; Hale SS; Cobb D; Brown BS
    Mar Pollut Bull; 2003 Oct; 46(10):1224-44. PubMed ID: 14550336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984-2016.
    Zhang Q; Blomquist JD
    Sci Total Environ; 2018 Apr; 619-620():1066-1078. PubMed ID: 29734585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a multimetric water quality Indicator for tracking progress towards the achievement of Chesapeake Bay water quality standards.
    Hernandez Cordero AL; Tango PJ; Batiuk RA
    Environ Monit Assess; 2020 Jan; 192(2):94. PubMed ID: 31907685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal and annual loads of hydrophobic organic contaminants from the Susquehanna River basin to the Chesapeake Bay.
    Ko FC; Baker JE
    Mar Pollut Bull; 2004 May; 48(9-10):840-51. PubMed ID: 15111031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River.
    Ko FC; Baker J; Fang MD; Lee CL
    Chemosphere; 2007 Jan; 66(2):277-85. PubMed ID: 16828494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed.
    McCarty GW; Hapeman CJ; Rice CP; Hively WD; McConnell LL; Sadeghi AM; Lang MW; Whitall DR; Bialek K; Downey P
    Sci Total Environ; 2014 Mar; 473-474():473-82. PubMed ID: 24388901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.
    Schwartz D; Sample DJ; Grizzard TJ
    Environ Monit Assess; 2017 Jun; 189(6):256. PubMed ID: 28478541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of best management practices for improvement of dissolved oxygen in Chesapeake Bay estuary.
    Wang P; Batiuk R; Linker L; Shenk G
    Water Sci Technol; 2001; 44(7):173-80. PubMed ID: 11724485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of transport and storage of 60Co, 134Cs, 137Cs and 65Zn by river sediments in the lower Susquehanna River.
    McLean RI; Summers JK
    Environ Pollut; 1990; 63(2):137-53. PubMed ID: 15092325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors driving nutrient trends in streams of the Chesapeake Bay watershed.
    Ator SW; Blomquist JD; Webber JS; Chanat JG
    J Environ Qual; 2020 Jul; 49(4):812-834. PubMed ID: 33016477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from Northwestern semi-arid Mexico.
    Sánchez-Carrillo S; Alatorre LC; Sánchez-Andrés R; Garatuza-Payán J
    Environ Monit Assess; 2007 Sep; 132(1-3):377-93. PubMed ID: 17171240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).
    Wetz MS; Hayes KC; Fisher KV; Price L; Sterba-Boatwright B
    Mar Pollut Bull; 2016 Mar; 104(1-2):44-53. PubMed ID: 26876558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.