These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27136864)

  • 21. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets.
    Pfeiffer C; Grbic A
    Phys Rev Lett; 2013 May; 110(19):197401. PubMed ID: 23705738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity.
    Lee D; Trung NT; Moon UC; Lim S
    Appl Opt; 2017 Jun; 56(16):4670-4674. PubMed ID: 29047598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Unit Cell Shape on Switchable Infrared Metamaterial VO
    Ren F; Gu J; Wei H; Xu G; Zhao J; Dou S; Li Y
    Research (Wash D C); 2021; 2021():9804183. PubMed ID: 33982002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.
    Liu Z; Liu G; Liu X; Huang S; Wang Y; Pan P; Liu M
    Nanotechnology; 2015 Jun; 26(23):235702. PubMed ID: 25987526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizations of reconfigurable infrared metamaterial absorbers.
    Xu R; Lin YS
    Opt Lett; 2018 Oct; 43(19):4783-4786. PubMed ID: 30272739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bandwidth-enhanced and Wide-angle-of-incidence Metamaterial Absorber using a Hybrid Unit Cell.
    Nguyen TT; Lim S
    Sci Rep; 2017 Nov; 7(1):14814. PubMed ID: 29093515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb.
    Jiang W; Yan L; Ma H; Fan Y; Wang J; Feng M; Qu S
    Sci Rep; 2018 Mar; 8(1):4817. PubMed ID: 29556106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromagnetic surface waves supported by a resistive metasurface-covered metamaterial structure.
    Yaqoob MZ; Ghaffar A; Alkanhal MAS; Naz MY; Alqahtani AH; Khan Y
    Sci Rep; 2020 Sep; 10(1):15548. PubMed ID: 32968140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption.
    He J; Ding P; Wang J; Fan C; Liang E
    Opt Express; 2015 Mar; 23(5):6083-91. PubMed ID: 25836832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of a systematic error appearing as a periodic fluctuation in the frequency-domain absorption spectra of metamaterial absorbers.
    Yi C; Yoo YJ; Kim YJ; Kim KW; Lee YP; Rhee JY
    Opt Express; 2017 Jun; 25(12):13296-13304. PubMed ID: 28788865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid crystal tunable metamaterial absorber.
    Shrekenhamer D; Chen WC; Padilla WJ
    Phys Rev Lett; 2013 Apr; 110(17):177403. PubMed ID: 23679774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polarization-independent wide-angle triple-band metamaterial absorber.
    Shen X; Cui TJ; Zhao J; Ma HF; Jiang WX; Li H
    Opt Express; 2011 May; 19(10):9401-7. PubMed ID: 21643197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-narrow-band metamaterial perfect absorber based on surface lattice resonance in a WS
    Li Z; Sun X; Ma C; Li J; Li X; Guan BO; Chen K
    Opt Express; 2021 Aug; 29(17):27084-27091. PubMed ID: 34615130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scheme for achieving coherent perfect absorption by anisotropic metamaterials.
    Zhang X; Wu Y
    Opt Express; 2017 Mar; 25(5):4860-4874. PubMed ID: 28380754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrabroadband Absorption Enhancement via Hybridization of Localized and Propagating Surface Plasmons.
    Sang T; Qi H; Wang X; Yin X; Li G; Niu X; Ma B; Jiao H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Express; 2018 Mar; 26(5):5616-5631. PubMed ID: 29529764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.