These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2713692)

  • 1. Classical conditioning leads to changes in extracellular concentrations of ependymin in goldfish brain.
    Shashoua VE; Hesse GW
    Brain Res; 1989 Apr; 484(1-2):333-9. PubMed ID: 2713692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ependymin in the development of long lasting synaptic changes.
    Shashoua VE
    J Physiol (Paris); 1988-1989; 83(3):232-9. PubMed ID: 3272295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of long-term memory formation by anti-ependymin antisera after active shock-avoidance learning in goldfish.
    Piront ML; Schmidt R
    Brain Res; 1988 Feb; 442(1):53-62. PubMed ID: 3359256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ependymin, a brain extracellular glycoprotein, and CNS plasticity.
    Shashoua VE
    Ann N Y Acad Sci; 1991; 627():94-114. PubMed ID: 1831964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in subcellular distribution of ependymins in goldfish brain induced by learning.
    Schmidt R
    J Neurochem; 1987 Jun; 48(6):1870-8. PubMed ID: 3572403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of isolation stress and inhibited protein biosynthesis on learning and memory in goldfish.
    Laudien H; Freyer J; Erb R; Denzer D
    Physiol Behav; 1986; 38(5):621-8. PubMed ID: 3823175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External inhibition in a goldfish (Carassius auratus) classical conditioning situation.
    Wolach AH; Breuning SE; Solhkhan N
    Pavlov J Biol Sci; 1978; 13(2):83-92. PubMed ID: 683725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of memory consolidation after active avoidance conditioning by antisense intervention with ependymin gene expression.
    Schmidt R; Brysch W; Rother S; Schlingensiepen KH
    J Neurochem; 1995 Oct; 65(4):1465-71. PubMed ID: 7561839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-adhesion molecules in memory formation.
    Schmidt R
    Behav Brain Res; 1995 Jan; 66(1-2):65-72. PubMed ID: 7755901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors modulating the effects of teleost telencephalon ablation on retention, relearning, and extinction of instrumental avoidance behavior.
    Overmier JB; Papini MR
    Behav Neurosci; 1986 Apr; 100(2):190-9. PubMed ID: 3964421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain proteins synthesized during memory consolidation.
    Schmidt R; Löffler F; Müller HW; Seifert W
    Brain Res; 1986 Oct; 386(1-2):245-57. PubMed ID: 3535993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the in vivo polymerization of ependymin: a brain extracellular glycoprotein.
    Shashoua VE; Hesse GW; Milinazzo B
    Brain Res; 1990 Jul; 522(2):181-90. PubMed ID: 2224521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-induced expression of meningeal ependymin mRNA and demonstration of ependymin in neurons and glial cells.
    Rother S; Schmidt R; Brysch W; Schlingensiepen KH
    J Neurochem; 1995 Oct; 65(4):1456-64. PubMed ID: 7561838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish.
    Gómez A; Durán E; Salas C; Rodríguez F
    Neuroscience; 2010 Mar; 166(1):49-60. PubMed ID: 20006973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular fluid proteins of goldfish brain: studies of concentration and labeling patterns.
    Shashoua VE
    Neurochem Res; 1981 Oct; 6(10):1129-47. PubMed ID: 7335152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular fluid proteins of goldfish brain: evidence for the presence of proteases and esterases.
    Shashoua VE; Holmquist B
    J Neurochem; 1986 Sep; 47(3):738-43. PubMed ID: 3090206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of brain extracellular proteins in neuroplasticity and learning.
    Shashoua VE
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):183-207. PubMed ID: 4028066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The auditory system of the goldfish (Carassius auratus): effects of intense acoustic stimulation.
    Popper AN; Clarke NL
    Comp Biochem Physiol A Comp Physiol; 1976 Jan; 53(1):11-8. PubMed ID: 176
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain metabolism and the acquisition of new behaviors. I. Evidence for specific changes in the pattern of protein synthesis.
    Shashoua VE
    Brain Res; 1976 Jul; 111(2):347-64. PubMed ID: 949608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goldfish hippocampal pallium is essential to associate temporally discontiguous events.
    Rodríguez-Expósito B; Gómez A; Martín-Monzón I; Reiriz M; Rodríguez F; Salas C
    Neurobiol Learn Mem; 2017 Mar; 139():128-134. PubMed ID: 28065713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.