These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27136979)

  • 21. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect.
    Zhang E; Chen B; Zheng H; Teng X; Yan L
    Rev Sci Instrum; 2018 Apr; 89(4):046104. PubMed ID: 29716367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved differential-grating plane-mirror heterodyne interferometer for small roll angle measurement of a linear motion.
    Tang S; Ren Z; Han Q; Sheng W; Li M
    Rev Sci Instrum; 2020 Apr; 91(4):045113. PubMed ID: 32357738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Compound Speckle Interferometer for Precision Three-Degree-of-Freedom Displacement Measurement.
    Hsieh HL; Sun BY
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison between two heterodyne light sources using different electro-optic modulators for optical temperature measurements at visible wavelengths.
    Twu RC; Lee YH; Hou HY
    Sensors (Basel); 2010; 10(11):9609-19. PubMed ID: 22163429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative optical wavefront measurement in displacement measuring interferometer systems with sub-nm precision.
    Meskers AJ; Voigt D; Spronck JW
    Opt Express; 2013 Jul; 21(15):17920-30. PubMed ID: 23938664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High precision angular displacement measurement based on self-correcting error compensation of three image sensors.
    Yu H; Wan Q; Lu X; Zhao C; Liang L
    Appl Opt; 2022 Jan; 61(1):287-293. PubMed ID: 35200830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters.
    Hsu MT; Littler IC; Shaddock DA; Herrmann J; Warrington RB; Gray MB
    Opt Lett; 2010 Dec; 35(24):4202-4. PubMed ID: 21165137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber.
    Qian Y; Li J; Feng Q; He Q; Long F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A heterodyne interferometer for angle metrology.
    Hahn I; Weilert M; Wang X; Goullioud R
    Rev Sci Instrum; 2010 Apr; 81(4):045103. PubMed ID: 20441364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precise optical activity measurement of quartz plate by using a true phase-sensitive technique.
    Chou C; Huang YC; Chang M
    Appl Opt; 1997 Jun; 36(16):3604-9. PubMed ID: 18253381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Method for Detecting the Two-Degrees-of-Freedom Angular Displacement of a Spherical Pair, Based on a Capacitive Sensor.
    Yang S; Xu Y; Xu Y; Ma T; Wang H; Hou J; Liu D; Shen H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of a high-precision and non-contact dynamic angular displacement measurement with dual-Laser Doppler Vibrometers.
    Chen L; Zhang D; Zhou Y; Liu C; Che S
    Sci Rep; 2018 Jun; 8(1):9094. PubMed ID: 29904136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Holographic common-path interferometer for angular displacement measurements with spatial phase stepping and extended measurement range.
    Kitchen SR; Dam-Hansen C
    Appl Opt; 2003 Jan; 42(1):51-9. PubMed ID: 12518823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration.
    Lin CE; Yu CJ; Chen CC
    Opt Express; 2013 Apr; 21(8):9947-58. PubMed ID: 23609700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer.
    Hsieh HL; Chen JC; Lerondel G; Lee JY
    Opt Express; 2011 May; 19(10):9770-82. PubMed ID: 21643234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterodyne phase-shift-amplified interferometry with improved shot-noise-limited sensitivity and immunity to RIN.
    Liokumovitch E; Sternklar S
    Opt Lett; 2020 Apr; 45(7):1950-1953. PubMed ID: 32236039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor.
    Xu S; Shao H; Li C; Xing F; Wang Y; Li W
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strain measurement by heterodyne holographic interferometry.
    Thalmann R; Dändliker R
    Appl Opt; 1987 May; 26(10):1964-71. PubMed ID: 20454429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber-based two-wavelength heterodyne laser interferometer.
    Zhang Y; Guzman F
    Opt Express; 2022 Oct; 30(21):37993-38008. PubMed ID: 36258375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.