These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27137057)

  • 1. Quantum interference in a single anisotropic quantum dot near hyperbolic metamaterials.
    Sun L; Jiang C
    Opt Express; 2016 Apr; 24(7):7719-27. PubMed ID: 27137057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metasurface-Enabled Remote Quantum Interference.
    Jha PK; Ni X; Wu C; Wang Y; Zhang X
    Phys Rev Lett; 2015 Jul; 115(2):025501. PubMed ID: 26207477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites.
    Zhukovsky SV; Ozel T; Mutlugun E; Gaponik N; Eychmuller A; Lavrinenko AV; Demir HV; Gaponenko SV
    Opt Express; 2014 Jul; 22(15):18290-8. PubMed ID: 25089449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Control of Eu
    Genchi D; Kalinic B; Balasa IG; Cesca T; Mattei G
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials.
    Sreekanth KV; Krishna KH; De Luca A; Strangi G
    Sci Rep; 2014 Sep; 4():6340. PubMed ID: 25209102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent optical properties of shallow quantum dot excitons close to a dielectric-hyperbolic material interface.
    Ahn KJ
    Opt Express; 2021 Feb; 29(4):5098-5109. PubMed ID: 33726051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of long-range dipole-dipole interactions in hyperbolic metamaterials.
    Newman WD; Cortes CL; Afshar A; Cadien K; Meldrum A; Fedosejevs R; Jacob Z
    Sci Adv; 2018 Oct; 4(10):eaar5278. PubMed ID: 30310865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Single Quantum Dot Emission with a Micromirror.
    Yuan G; Gómez D; Kirkwood N; Mulvaney P
    Nano Lett; 2018 Feb; 18(2):1010-1017. PubMed ID: 29302972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Readout of a dopant spin in the anisotropic quantum dot with a single magnetic ion.
    Rodek A; Kazimierczuk T; Bogucki A; Smoleński T; Pacuski W; Kossacki P
    J Phys Condens Matter; 2019 Nov; 31(45):455301. PubMed ID: 31323648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Extraction of Hyperbolic Metamaterial Permittivity using Total Internal Reflection Ellipsometry.
    Zhang C; Hong N; Ji C; Zhu W; Chen X; Agrawal A; Zhang Z; Tiwald TE; Schoeche S; Hilfiker JN; Guo LJ; Lezec HJ
    ACS Photonics; 2018; 5():. PubMed ID: 30997368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiband enhancement of magnetic dipole emission with tapered hollow hyperbolic metamaterials.
    Yang Y; Zhu BF; Dai HT; Sun XW
    Opt Express; 2019 May; 27(11):15565-15574. PubMed ID: 31163751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband room temperature strong coupling between quantum dots and metamaterials.
    Indukuri C; Yadav RK; Basu JK
    Nanoscale; 2017 Aug; 9(32):11418-11423. PubMed ID: 28766669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials.
    Schulz KM; Vu H; Schwaiger S; Rottler A; Korn T; Sonnenberg D; Kipp T; Mendach S
    Phys Rev Lett; 2016 Aug; 117(8):085503. PubMed ID: 27588866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.
    Kapitanova PV; Ginzburg P; Rodríguez-Fortuño FJ; Filonov DS; Voroshilov PM; Belov PA; Poddubny AN; Kivshar YS; Wurtz GA; Zayats AV
    Nat Commun; 2014; 5():3226. PubMed ID: 24526135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Upper-Excited State Fluorescence in an Organic Hyperbolic Metamaterial.
    Shen Y; Yan Y; Brigeman AN; Kim H; Giebink NC
    Nano Lett; 2018 Mar; 18(3):1693-1698. PubMed ID: 29470077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic vacuum-induced interference in decay channels.
    Agarwal GS
    Phys Rev Lett; 2000 Jun; 84(24):5500-3. PubMed ID: 10990979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned multilayer metamaterial for fast and efficient photon collection from dipolar emitters.
    Makarova OA; Shalaginov MY; Bogdanov S; Kildishev AV; Boltasseva A; Shalaev VM
    Opt Lett; 2017 Oct; 42(19):3968-3971. PubMed ID: 28957174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.